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Outline of the Course

Introduce computational tools to analyze systems in which at
least one conserved quantity is present.

@ Lecture 3: What are conservative systems? How do we
analyze the dynamical behavior.

@ Lecture 4: Advanced Applications in Celestial Mechanics.
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Content

Lecture 3: Conservative Systems

@ Simple examples:

e what is a conservative system?
e why do we care about them?
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Content

Lecture 3: Conservative Systems

@ Simple examples:

e what is a conservative system?
e why do we care about them?

@ |s there any special and distinctive feature?

e How do we know whether our system is conservative?
e Eigenvalues and Floquet Multipliers

@ Conserved quantities, symmetries and reversibility.
e How do we find conserved quantities?

@ Not so simple example.
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A simple example

mé+m%sin9:O
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A simple example

mé+m%sm9:O
taking ¢ =1,

0+sinf=0
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A simple example

mé+m%sin9:O

taking ¢ =1,
0+sinf=0
Usual trick:

06+6sind=0  and integrating:
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A simple example

mé+m%sin9:O

taking ¢ =1,
0+sinf=0
Usual trick:

06+6sind=0  and integrating:

1.
592 —cosf=C  ChoosingC=E —1:

1.
E92+(1 —cosf) =E
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A simple example

mé+m %sine =0
taking ¢ =1,
0+sinf=0
Usual trick:

06+6sind=0  and integrating:

1.
592 —cosf=C  ChoosingC=E —1:

%9'2 +(1—cosf)=E
E(0,0) = K+ V is the energy with .
E(0,0) = 0 and E(r,0) = 2. uf

Computational Methods in Dynamical Systems



Consequences

1.
E:§02+(1 — cos6)

is a conserved quantity meaning that £ = 0.
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Consequences

1.
E= 502 + (1 —cosb)
is a conserved quantity meaning that £ = 0.

IDEA: fix E and get rid of one of the variables [REDUCTION]

0= +/2(E—(1-cosb))

and we have reduced the system to dim=1 ODE!
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E= 502 + (1 —cosb)
is a conserved quantity meaning that £ = 0.

IDEA: fix E and get rid of one of the variables [REDUCTION]
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and we have reduced the system to dim=1 ODE!
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Consequences

E= %0'2+(1 — cos6)

is a conserved quantity meaning that £ = 0.
IDEA: fix E and get rid of one of the variables [REDUCTION]

0= +/2(E—(1-cosb))

and we have reduced the system to dim=1 ODE!
BUT in autonomous dim 1 ODE there are no periodic solutions!
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Consequences

E= %0'2+(1 — cos6)

is a conserved quantity meaning that £ = 0.
IDEA: fix E and get rid of one of the variables [REDUCTION]

0 = +/2(E — (1 —cosb))

and we have reduced the system to dim=1 ODE!
BUT in autonomous dim 1 ODE there are no periodic solutions!

Where is the catch?
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Rewriting the equations in terms of E

Denoting by g = 6, p = 6, E(q,p) = H(q,p) = 3p? + (1 —cos q)
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Rewriting the equations in terms of E

Denoting by g = 6, p = 6, E(q,p) = H(q,p) = 3p? + (1 —cos q)

N — _  OH
a-p -
p = -sin(g) = -
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Rewriting the equations in terms of E

Denoting by g = 0, p = 6, E(q,p) = H(q,p) = 3p*+ (1 —cos q)
p = —sinlg = %
[g.p] =uc UCR?® and J = (70,,7 ’g) the symplectic matrix,
we derive the Hamiltonian Equations of motion.
u=JVH(u)
Properties of J: J! = —J, J~' = J!, J'J = b, and det(J) = +1.
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How are the eigenvalues and Floquet multipliers?

@ The structure of the equations of motion have a strong
influence on the stability indicators of equilibria and
periodic orbits.

@ The characteristic polinomial p(\) = p(—\) and,
consequently,

if X is an eigenvalue = —)\ is also an eigenvalue.
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@ The structure of the equations of motion have a strong
influence on the stability indicators of equilibria and
periodic orbits.

@ The characteristic polinomial p(\) = p(—\) and,
consequently,

if X is an eigenvalue = —)\ is also an eigenvalue.

@ Hamiltonian systems have no focus or sinks.
@ There are no attractors in Hamiltonian systems.
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How are the eigenvalues and Floquet multipliers?

@ The structure of the equations of motion have a strong
influence on the stability indicators of equilibria and
periodic orbits.

@ The characteristic polinomial p(\) = p(—\) and,
consequently,

if X is an eigenvalue = —)\ is also an eigenvalue.

@ Hamiltonian systems have no focus or sinks.
@ There are no attractors in Hamiltonian systems.
@ An analogous result holds for Floquet Multipliers:

if 1 is a multiplier = — is also a multiplier.
v

+1 multiplier appears always in pairs. uﬁ



Eigenvalues for conservative systems

Im(3) Im()) Im()

I (a) k (b) ()

P>p,

P<Pc P=Pc

Im(3) Im() Im(})

I (@) * (b)

[
1 Re(N * Re(® Re(R
° [ ]
P<Pc P=pc P>Pc u
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Geometrical meaning of conserved quantities

F is a conserved quantity of x = f(x) if
F(x) = VF(x)'f(x) =0

in words, the vector VF(x) is orthogonal to the flow of the
vector field.
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How do we obtain conserved quantities?

@ In Lagrangian systems we have Noether’s Theorem [1915].
According to Einstein: a penetrating mathematical thinking.
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@ For each one parameter symmetry of a Lagrangian there
exists an associated conserved quantity.
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How do we obtain conserved quantities?

@ In Lagrangian systems we have Noether’s Theorem [1915].
According to Einstein: a penetrating mathematical thinking.

@ For each one parameter symmetry of a Lagrangian there
exists an associated conserved quantity.

@ Claim: If g — q(s) leaves the Lagrangian invariant: i.e.
%E(q(s), q(s)) =0, then, C = p% is a conserved

quantity.
d oLy oL o o oc
at\ag) ag -~ TP~ aq
dC _ . dg(s) | da(s) _
dt " ds ds
L dg(s) oL dg(s) _ d o
aq dS + 8q dS - ds‘c(q(s)aq(s)) - 0 .y
us
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Conserved quantities and symmetries

@ If £ is time invariant, then C = energy

@ If £ is invariant under translations, then
C = Linear momentum

@ If £ is invariant under rotations, then
C = Angular momentum
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Conserved quantities and symmetries

@ If £ is time invariant, then C = energy
@ If £ is invariant under translations, then
C = Linear momentum
@ If £ is invariant under rotations, then
C = Angular momentum

Message

There is a direct relation between conserved quantities and
continuous symmetries
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Remark: Also holds for Quantum Mechanics

@ Hamiltonian equations of Classical Mechanics:
u=JVH(u)

@ Schrddinger equation with W = Ve + iV,

a\u ~
= HvV
Yot
Splitting in real and imaginary parts
Yo = Hum
Tt = —HVge

with u = [Wge V] we get

U= JHu u@
Computational Methods in Dynamical Systems



@ Excellent IVP integrators (Dstool, Taylor, Tides, Matlab)

@ Compute Lyapunov exponents or other chaos indicators.

@ Compute Poincaré sections: combination of IVP integration
+ reduction + event location (fingerprints of chaotic motion)
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Poincaré: periodic orbits in Hamiltonian systems

Les méthodes nouvelles de la mécanique céleste, 1899

C
|
s

"It seems at first that the existence
of periodic solutions could not be of
any practical interest whatsoever.

us
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Poincaré: periodic orbits in Hamiltonian systems

Les méthodes nouvelles de la mécanique céleste, 1899

"It seems at first that the existence
of periodic solutions could not be of
any practical interest whatsoever.

Indeed, the probability is zero for
the initial condition to correspond
precisely to those of a periodic so-
lution.

us
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Poincaré: periodic orbits in Hamiltonian systems

Les méthodes nouvelles de la mécanique céleste, 1899

"It seems at first that the existence
of periodic solutions could not be of
any practical interest whatsoever.

Indeed, the probability is zero for
the initial condition to correspond
precisely to those of a periodic so-
lution. ... (Poincare’s conjecture)

us
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Poincaré: periodic orbits in Hamiltonian systems

Les méthodes nouvelles de la mécanique céleste, 1899

"It seems at first that the existence
of periodic solutions could not be of
any practical interest whatsoever.

Indeed, the probability is zero for

the initial condition to correspond
precisely to those of a periodic so-

lution. ... (Poincare’s conjecture)

... what renders these periodic so-

lutions so precious is that they

are, so to speak, the only opening

through which we may try to pene-

trate into the fortress which has the .
reputation of being impregnable” u’}g‘

Computational Methods in Dynamical Systems



Content

Lecture 3: Continuation Theorems

@ Reduction vs unfolding.
@ Continuation Theorems.
@ Examples: the spring pendulum and localized NLS.
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Reduction vs unfolding

X = f(x,\)
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Reduction vs unfolding

X = f(x,\)

F(x,\)=E

uF
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Reduction vs unfolding

x = f(x,\)
F(x,\)=E

@ How do we continue solution in the | E | parameter?
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Reduction vs unfolding

x = f(x,\)
F(x,\)=E

@ How do we continue solution in the | E | parameter?
@ A simple example.
© Numerical Implementation [in AUTO].

© Continuation in conservative systems or continuation
without parameters; an alternative to reduction methods.
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Reduction vs unfolding

x = f(x,\)
F(x,\)=E

@ How do we continue solution in the | E | parameter?
@ A simple example.
© Numerical Implementation [in AUTO].

© Continuation in conservative systems or continuation
without parameters; an alternative to reduction methods.

@ Applications to the elastic pendulum and quantum wells
(NLS).
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The best-seller in mathematical modelling

Galileo’s pendulum

mg sin @\,

mg lj?éf
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The best-seller in mathematical modelling

Galileo’s pendulum
@ 3 parameters: L,m, g

mg sin @\,

mg lj;gg\
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The best-seller in mathematical modelling

Galileo’s pendulum
@ 3 parameters: L,m, g
@ Newton’s second law:

mL + mgsinf =0

mg sin @\,

mg lj;gg\
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The best-seller in mathematical modeling

Galileo’s pendulum
@ 3 parameters: L,m, g
@ Newton’s second law:

é+%sin0:0

mg sin @\,

mg us
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The best-seller in mathematical modeling

Galileo’s pendulum

® Rescaling time with 7 = , /<.

@ Newton’s second law:

Galileo’s Pendulum Equation

6 +sind =0

mg sin @ "\‘

mg -
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The best-seller in mathematical modeling

Galileo’s pendulum

® Rescaling time with 7 = , /<.

@ Newton’s second law:

Galileo’s Pendulum Equation

6 +sind =0

@ One dof ODE without
parameters with two equilibria:
f=0(S)andd ==« (U)and a
one parameter family of
periodic orbits.

mg sin @ "\‘

mg
Computational Methods in Dynamical Systems



Phase portrait of Galileo’s pendulum

Galileos pendulum
T

uF
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The reduction method

@ Position and velocity are not independent of each other.

Computational Methods in Dynamical Systems



The reduction method

@ Position and velocity are not independent of each other.
@ The system has a first integral or conserved quantity:

62
E:E+1—cose.
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The reduction method

@ Position and velocity are not independent of each other.
@ The system has a first integral or conserved quantity:

62
E:E+1—cose.

@ The dimension of the problem can be reduced by
eliminating the velocity:

6 = /2(E — 1+ cosh).
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The reduction method

@ Position and velocity are not independent of each other.
@ The system has a first integral or conserved quantity:

62
E:E+1—cose.

@ The dimension of the problem can be reduced by
eliminating the velocity:

6 = /2(E — 1+ cosh).

@ We have introduced now E as an internal parameter that
can be used for continuation (and lowered the dimension). Ag
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The general picture for Hamiltonian systems

U open setin R?", H € C'(U) con J = (_O,n ’5) :
U = JVH(u)

@ ODE without explicit parameters.
@ His a conserved quantity.
@ Periodic orbits are not isolated (cylinder theorem).

S

uF
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Continuation of periodic orbits

Let up(t) be a Ty-periodic solution.
Is it possible to find another periodic solution close to uy(t) by
changing the natural parameter H?

U

T ()
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Geometrical picture: Cylinder Theorem
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Geometrical picture: Reduction
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Alternative method: Increase the dimension!

Galileos pendulum
T

u)

Computational Methods in

Dynamical Systems



Alternative method: positive dissipation

Galileos pendulum
T
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Alternative: negative dissipation

Galileos pendulum
T
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Theidea: 6 + +sind =0
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Theidea: 6 + +sind =0

a=

a<O0

Sl
\

uF
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Numerical implementation
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Numerical implementation

{ io= Yy
Vo = —sin(yy)
¥1(0) = y2(0) =0
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AUTO implementation

y'+ay +sin(y)=0
y(0)=y'(0)=0

{ no= Yy

Yo = —sin(yr) —ays
¥1(0) = y2(0) =0

where « is an "unfolding" parameter.
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AUTO implementation

y'+ay +sin(y)=0
y(0)=y'(0)=0

{ no= Yy

Yo = —sin(yr) —ays
¥1(0) = y2(0) =0

where « is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in a.
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AUTO implementation

y'+ay +sin(y)=0
y(0)=y'(0)=0

{ no= Yy

Yo = —sin(yr) —ays
¥1(0) = y2(0) =0

where « is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in a.
Result: « = 0 will be a "vertical" Hopf bifurcation.
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AUTO implementation

y'+ay +sin(y)=0
y(0)=y'(0)=0

{ no= Yy

Yo = —sin(yr) —ays
¥1(0) = y2(0) =0

where « is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in a.
Result: « = 0 will be a "vertical" Hopf bifurcation.

Idea: Continue the family of periodic orbits in « with a pseudo
arclength scheme and check that « = 0 along the branch.
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AUTO implementation

y'+ay +sin(y)=0
y(0)=y'(0)=0

{ no= Yy

Yo = —sin(yr) —ays
¥1(0) = y2(0) =0

where « is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in a.
Result: o = 0 will be a "vertical" Hopf bifurcation.

Idea: Continue the family of periodic orbits in « with a pseudo
arclength scheme and check that « = 0 along the branch.

We have changed the | E | parameter by an [ o] parameter. U;@



TO results
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@ ltis straightforward to implement
(if we know the unfolding term ) [Physica D 181 (2001)].
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@ It can be extended to k independent conserved quantities.
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© We can detect homo- and heteroclinic connections.
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@ ltis straightforward to implement
(if we know the unfolding term ) [Physica D 181 (2001)].

@ It can be extended to k independent conserved quantities.
@ Bifurcations can be detected and followed.
© We can detect homo- and heteroclinic connections.

© The computation preserves the simplectic character of the
problem (Hamiltonian case).
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@ ltis straightforward to implement
(if we know the unfolding term ) [Physica D 181 (2001)].

@ It can be extended to k independent conserved quantities.
@ Bifurcations can be detected and followed.
© We can detect homo- and heteroclinic connections.

© The computation preserves the simplectic character of the
problem (Hamiltonian case).

© For reversible system there are further simplifications.
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Theory: BVP Formulation

u = T(JVH(u(t)) + aVH(u(t))), u(1) = u(0). (1)
with u,« and T as unknowns. Finding a T-periodic orbit of

u" = JVH(u) is equivalent to finding a solution of (1) if « = 0.
We have to include a phase condition to fix the time origin.

(u(0) — up(0))"up(0) = 0. (@)

Computational Methods in Dynamical Systems



Continuation theorem with 1 conserved quantity

Theorem

Let up(t) be a periodic solution with period 0 < Ty < +o0
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicity one or algebraic multiplicity two.
Then, there exists a unique branch of solutions of (1) and (2) in
a neighborhood of (u, T, a) = (ug, Tp, 0). Moreover, along the
branch a = 0.

@ The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.

Computational Methods in Dynamical Systems



Generalization

@ Let Wp = {VF(p) : F first ontegral of x = f(x)},
dim(Wp) = K, vi(X, ) the flow and orb,(p) the orbit.

@ x=1f(x) - x=f(x)+a1VFi(x)+...4+axVF(x),

Proposition

Letp € R" s. t. orby,(p) be T—periodic. It holds that
Im(D#7(p) — 1) + RF(p) € Wp--

Computational Methods in Dynamical Systems



General results

Definition (Normal periodic orbit)

Let p € R” such that the orbit orb,,(p) is periodic with period
T > 0 and p is not an equilibrium of z = f(z). We say that
orb,,(p) is a normal periodic orbit of e z = f(2) if

Im(DP7(p) — /) + Rf(p) = W,

Theorem (Continuation with k conserved quantities)

Letp € R" be a point that generates a normal periodic orbit of
x = f(x) with period T > 0. Then there exists a neighborhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighborhood of T is locally a
submanifold at p.

U
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Elastic Pendulum

L))

q1

Adimensional parameter A = =~

mg
Equilibria{ (0,-A—1) Stable

(0,A—1) Unstable (A > 1)

1 \t
H= %1+%+ (@ + G- )+CI2+>\+§- uf



Reversibility continuation: Normal modes

-3.8
ql -1 -08-06-04-02 0 02 04 06 0.8 1

3

uF
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Vertical Nonlinear Normal Modes
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°
°
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Period doubled branch

arg(A;)
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Period doubled branch
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Schematic bifurcation diagram
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Reversibility continuation

Definition: We say that R € L(R") is a reversibility for the
system x = f(x), if Rf(x) = —f(RXx) for all x € R".
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Reversibility continuation

Definition: We say that R € L(R") is a reversibility for the
system x = f(x), if Rf(x) = —f(RXx) for all x € R".

@ + 93

Plano de puntos fijos de Ry

a=p2=0
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Reversibility continuation

Definition: We say that R € L(R") is a reversibility for the
system x = f(x), if Rf(x) = —f(RXx) for all x € R".

@ + 93

Plano de puntos fijos de Ry

Example: in a mechanical system changing the sign to all

velocities and integrate in negative time we get another

solution. N
Poetic definition: In an reversible system the future is the u‘gﬁ
past of an alternative present.
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Reversibility continuation: R1

L. L,

5\\ //;5

uF
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Reversibility continuation: R2

q2

q1

@t (x) Rap:(x)
ué



Reversibility continuation: orbits
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Reversibility continuation: orbits

2151050051152
qd

d

uF
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Reversibility continuation: results
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Uz
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Lecture 4: Advanced Applications in Celestial Mechanics

@ Lagrange, Euler and the figure eight.
@ Horseshoe periodic orbits of the 3BP and 5BP.
@ Periodic orbits in the Sitnikov Problem
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Aplication to the figure 8 of the TBP

@ In 1999 A. Chenciner & R. Montgomery [Ann. Math. 152
881 (2000)] proved with variatonal techniques the
existence of a new solution of the TBP.

A remarkable periodic solution of the three body problem

@ C. Simé computed it numerically, coined the name
choreography, determined its stability and showed that it
belonged to a one parameter family.
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3D Three Body Problem

G — my XX | Xi-Xs
X1 — Xa X1 — X[’

).ig _ ; Xo — X4 B 3Xg—Xg
X4 — Xo3 X2 — xg|3

ig ) X3 — Xo ~ m X3 — X4
X3 — X2[3 Xy — X33’

’7 first integrals ‘ H,PandJ, |permutations |(if my = ms)

(q17q27q37 P1, P2, p3) = (q17q37q27 P1,P3, p2)

| Orbital symmetry | (scaling)

’ ) ’ ) ) )\72 I )\72 ’ )\72 ? )\ ) )\ )\ 3
(41,92, 93, P1, P2, P3) — (A7°d1, A"°q2, A3, AP1, AP2, AP3) us
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Local continuation
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Global continuation: from TBP to RTBP
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Application to the RTBP

@ An easy to state but challenging problem with a single
conserved quantity and tons of known (and unknown)
families of PO.
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Application to the RTBP

@ An easy to state but challenging problem with a single
conserved quantity and tons of known (and unknown)
families of PO.

. o
X=2y = 5%
. . o

_ox = L
y X ay’

1 A-n) w1
Q _ 122 AL
(xy)=5(x+y7) + P +r2+2u(1 1),
= (x+p)?+y2
rg=(x+p—17>2+y~%

Jacobi constant:  C = 2Q(x, y) — x2 — y2. =
(x,¥) y ug
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RTBP: Lagrange Points

@ The RTBP has five equilibrium points L; that depend on . .
@ The Jacobi constant on them (C; = C(L;)) fulfills the
relation
3:C4:C5<C3<C1 <Cg,

and C3 = Cy for p = 3.

uF
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RTBP: Lagrange Families [IUBC 17 (2007)]

u=
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RTBP: Lagrange Families [IJBC 17 (2007)]
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Why the name Horseshoe?

b i
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Two co-orbital satellites of Saturn

@ Janus and Epimetheus are satellites of Saturn with
coplanar orbits that are very close to each other.

@ mg =5.69 x 10%kg, Rs = 60268Km,

my =1.98 x 10'8Kg, 196 x 192 x 150 and
me =5.50 x 10" Kg, 144 x 108 x 98 .

us
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@ The motion of both satellites occurs in the same plane.

@ Most of the time the satellites do not feel each other (two
body Kepler solution).

@ According to Kepler’s laws the inner satellite goes faster
than the outer one and eventually after some full
revolutions will catch it (encounter).

@ Only when they are close to each other they feel the
mutual gravitational attraction (encounter).
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The orbits

°
a1 -é?)
1 —ecos¥

@ a; = 151460, e, = 0.0068

@ ar — 151410, ez = 0.0098

T,
!

uF
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A closer look at the encounter

r r ‘."-mz m,
mMy—"e L_+m, gt é
m, ; m,
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2* @ 3 :
m, o m,
m My m,

@ The inner body does not overtake the outer one but they
interchange orbits; the inner becomes outer and
vice-versa.

@ The defining property of a horseshoe orbit is this no u“g
overtaking condition.
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Horseshoe in a rotating frame; scheme
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Horseshoe in a rotating frame; calculated
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Stability of the Lagrange points: Horseshoe orbit
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Stability of the Lagrange points: Horseshoe orbit
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Stability of the Lagrange points: Horseshoe orbit

loglul
o
/i< -

Computational Methods in Dynamical Systems



Stability of the Lagrange points

: Horseshoe orbit
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Bifurcation diagram

2.035

2.03f .
2.025) .

2.02f .

norm

~ 2,015} .

L

2.01f / .

2.005( / 1
2,

0 0.5 1 15 2 2.5 3 3.5

-4
3 x 10 | zg]
Computational Methods in Dynamical Systems




2k+1 Horseshoe solution
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5 body Horseshoe connected to Lagrange
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Conclusions and open problems

@ January 2016: DANCE RTNS Kam Theorem by A. Celleti.
@ Google for whooping solution three body.
@ Jgv talk at the workshop.
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