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Outline of the Course

Goal

Introduce computational tools to analyze systems in which at
least one conserved quantity is present.

Lecture 3: What are conservative systems? How do we
analyze the dynamical behavior.
Lecture 4: Advanced Applications in Celestial Mechanics.
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Content

Lecture 3: Conservative Systems

Simple examples:
what is a conservative system?
why do we care about them?

Is there any special and distinctive feature?
How do we know whether our system is conservative?
Eigenvalues and Floquet Multipliers

Conserved quantities, symmetries and reversibility.
How do we find conserved quantities?

Not so simple example.
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A simple example

m θ̈ + m
g
L

sin θ = 0

taking g
L = 1,

θ̈ + sin θ = 0

Usual trick:

θ̇ θ̈ + θ̇ sin θ = 0 and integrating:

1
2
θ̇2 − cos θ = C Choosing C = E − 1:

1
2
θ̇2 + (1− cos θ) = E

E(θ, θ̇) = K + V is the energy with

E(0,0) = 0 and E(π,0) = 2.
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Consequences

E =
1
2
θ̇2 + (1− cos θ)

is a conserved quantity meaning that Ė = 0.

IDEA: fix E and get rid of one of the variables [REDUCTION]

θ̇ =
√

2(E − (1− cos θ))

and we have reduced the system to dim=1 ODE!
BUT in autonomous dim 1 ODE there are no periodic solutions!

Where is the catch?
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Consequences

E =
1
2
θ̇2 + (1− cos θ)

is a conserved quantity meaning that Ė = 0.
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Rewriting the equations in terms of E

Denoting by q = θ, p = θ̇, E(q,p) = H(q,p) = 1
2p2 + (1− cos q)

{
q̇ = p = ∂H

p
ṗ = − sin(q) = −∂H

q

[q,p] = u ∈ U ⊂ R2n and J =
(

0 In
−In 0

)
the symplectic matrix,

we derive the Hamiltonian Equations of motion.

u̇ = J∇H(u)

Properties of J: J t = −J, J−1 = J t , J tJ = I2n and det(J) = ±1.
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How are the eigenvalues and Floquet multipliers?

The structure of the equations of motion have a strong
influence on the stability indicators of equilibria and
periodic orbits.
The characteristic polinomial p(λ) = p(−λ) and,
consequently,

if λ is an eigenvalue⇒ −λ is also an eigenvalue.

Hamiltonian systems have no focus or sinks.
There are no attractors in Hamiltonian systems.
An analogous result holds for Floquet Multipliers:

if µ is a multiplier⇒ 1
µ

is also a multiplier.

+1 multiplier appears always in pairs.
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Eigenvalues for conservative systems
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Geometrical meaning of conserved quantities

F is a conserved quantity of ẋ = f (x) if

Ḟ (x) = ∇F (x)t f (x) = 0

in words, the vector ∇F (x) is orthogonal to the flow of the
vector field.
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How do we obtain conserved quantities?

In Lagrangian systems we have Noether’s Theorem [1915].
According to Einstein: a penetrating mathematical thinking.

For each one parameter symmetry of a Lagrangian there
exists an associated conserved quantity.
Claim: If q → q(s) leaves the Lagrangian invariant: i.e.
d
dsL(q(s), q̇(s)) = 0, then, C = p dq(s)

ds is a conserved
quantity.

d
dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0↔ ṗ =
∂L
∂q

dC
dt

= ṗ
dq(s)

ds
+ p

dq̇(s)

ds
=

∂L
∂q

dq(s)

ds
+
∂L
∂q̇

dq̇(s)

ds
=

d
ds
L(q(s), q̇(s)) = 0
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Conserved quantities and symmetries

If L is time invariant, then C = energy
If L is invariant under translations, then
C = Linear momentum
If L is invariant under rotations, then
C = Angular momentum

Message

There is a direct relation between conserved quantities and
continuous symmetries
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Remark: Also holds for Quantum Mechanics

Hamiltonian equations of Classical Mechanics:

u̇ = J∇H(u)

Schrödinger equation with Ψ = ΨRE + iΨIM

i
∂Ψ

∂t
= ĤΨ

Splitting in real and imaginary parts
∂ΨRE
∂t = Ĥ ΨIM

∂ΨIM
∂t = −Ĥ ΨRE

with u = [ΨRE ΨIM ]t we get

u̇ = JĤu
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What about Computational Tools ?

Excellent IVP integrators (Dstool, Taylor, Tides, Matlab)
Compute Lyapunov exponents or other chaos indicators.
Compute Poincaré sections: combination of IVP integration
+ reduction + event location (fingerprints of chaotic motion)
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Poincaré: periodic orbits in Hamiltonian systems

Les méthodes nouvelles de la mécanique céleste, 1899

"It seems at first that the existence
of periodic solutions could not be of
any practical interest whatsoever.

Indeed, the probability is zero for
the initial condition to correspond
precisely to those of a periodic so-
lution. . . . (Poincare’s conjecture)
. . . what renders these periodic so-
lutions so precious is that they
are, so to speak, the only opening
through which we may try to pene-
trate into the fortress which has the
reputation of being impregnable"
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Content

Lecture 3: Continuation Theorems

Reduction vs unfolding.
Continuation Theorems.
Examples: the spring pendulum and localized NLS.
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Reduction vs unfolding

ẋ = f (x , λ)

F (x , λ) = E

1 How do we continue solution in the E parameter?
2 A simple example.
3 Numerical Implementation [in AUTO].
4 Continuation in conservative systems or continuation

without parameters; an alternative to reduction methods.
5 Applications to the elastic pendulum and quantum wells

(NLS).
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The best-seller in mathematical modelling

Galileo’s pendulum

3 parameters: L,m,g
Newton’s second law:

mLθ̈ + mg sin θ = 0
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Galileo’s pendulum
3 parameters: L,m,g
Newton’s second law:
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g
L

sin θ = 0
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The best-seller in mathematical modeling

Galileo’s pendulum

Rescaling time with τ =
√

L
g .

Newton’s second law:

Galileo’s Pendulum Equation

θ̈ + sin θ = 0

One dof ODE without
parameters with two equilibria:
θ = 0 (S) and θ = π (U) and a
one parameter family of
periodic orbits.
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Phase portrait of Galileo’s pendulum
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u(1)

u(
2)
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The reduction method

Position and velocity are not independent of each other.

The system has a first integral or conserved quantity:

E =
θ̇2

2
+ 1− cos θ.

The dimension of the problem can be reduced by
eliminating the velocity:

θ̇ =
√

2(E − 1 + cosθ).

We have introduced now E as an internal parameter that
can be used for continuation (and lowered the dimension).
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The general picture for Hamiltonian systems

U open set in R2n, H ∈ C1(U) con J =
(

0 In
−In 0

)
.

u′ = J∇H(u)

ODE without explicit parameters.
H is a conserved quantity.
Periodic orbits are not isolated (cylinder theorem).
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Continuation of periodic orbits

Let u0(t) be a T0-periodic solution.
Is it possible to find another periodic solution close to u0(t) by
changing the natural parameter H?
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Geometrical picture: Cylinder Theorem
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Geometrical picture: Reduction
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Alternative method: Increase the dimension!
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Alternative method: positive dissipation
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Alternative: negative dissipation
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The idea: θ̈ + αθ̇ + sin θ = 0

α > 0 

α = 0

α < 0
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Numerical implementation

y ′′ + sin(y) = 0

y(0) = y ′(0) = 0

{
ẏ1 = y2
ẏ2 = − sin(y1)

y1(0) = y2(0) = 0
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AUTO implementation

y ′′ + αy ′ + sin(y) = 0

y(0) = y ′(0) = 0

{
ẏ1 = y2
ẏ2 = − sin(y1)− αy2

y1(0) = y2(0) = 0

where α is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in α.
Result: α = 0 will be a "vertical" Hopf bifurcation.

Idea: Continue the family of periodic orbits in α with a pseudo
arclength scheme and check that α = 0 along the branch.

We have changed the E parameter by an α parameter.
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ẏ2 = − sin(y1)− αy2

y1(0) = y2(0) = 0

where α is an "unfolding" parameter.

Task: continue the trivial y = 0 equilibrium in α.
Result: α = 0 will be a "vertical" Hopf bifurcation.

Idea: Continue the family of periodic orbits in α with a pseudo
arclength scheme and check that α = 0 along the branch.

We have changed the E parameter by an α parameter.

FisMat 2015 Computational Methods in Conservative Dynamical Systems



AUTO implementation

y ′′ + αy ′ + sin(y) = 0

y(0) = y ′(0) = 0

{
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AUTO results
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Remarks

1 It is straightforward to implement
(if we know the unfolding term ) [Physica D 181 (2001)].

2 It can be extended to k independent conserved quantities.
3 Bifurcations can be detected and followed.
4 We can detect homo- and heteroclinic connections.
5 The computation preserves the simplectic character of the

problem (Hamiltonian case).
6 For reversible system there are further simplifications.
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Theory: BVP Formulation

u′ = T (J∇H(u(t)) + α∇H(u(t))), u(1) = u(0). (1)

with u, α and T as unknowns. Finding a T -periodic orbit of
u′ = J∇H(u) is equivalent to finding a solution of (1) if α = 0.
We have to include a phase condition to fix the time origin.

(u(0)− u0(0))∗u′0(0) = 0. (2)
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Continuation theorem with 1 conserved quantity

Theorem
Let u0(t) be a periodic solution with period 0 < T0 < +∞
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicity one or algebraic multiplicity two.
Then, there exists a unique branch of solutions of (1) and (2) in
a neighborhood of (u,T , α) = (u0,T0,0). Moreover, along the
branch α = 0.

The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.
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Generalization

LetWp = {∇F (p) : F first ontegral of ẋ = f (x)},
dim(Wp) = k , ϕt (x,α) the flow and orbϕ(p) the orbit.
ẋ = f (x) → ẋ = f (x) + α1∇F1(x) + . . .+ αk∇Fk (x),

Proposition

Let p ∈ Rn s. t. orbϕ(p) be T−periodic. It holds that
Im(DϕT (p)− I) + Rf (p) ⊆ W⊥p .
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General results

Definition (Normal periodic orbit)

Let p ∈ Rn such that the orbit orbϕ(p) is periodic with period
T > 0 and p is not an equilibrium of ż = f (z). We say that
orbϕ(p) is a normal periodic orbit of e ż = f (z) if

Im(DϕT (p)− I) + Rf (p) =W⊥p .

Theorem (Continuation with k conserved quantities)

Let p ∈ Rn be a point that generates a normal periodic orbit of
ẋ = f (x) with period T > 0. Then there exists a neighborhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighborhood of T is locally a
submanifold at p.
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Elastic Pendulum

Adimensional parameter λ = lk
mg

Equilibria
{

(0,−λ− 1) Stable
(0, λ− 1) Unstable (λ > 1)

H =
p2

1
2

+
p2

2
2

+
1
2

(
√

q2
1 + q2

2 − λ)2 + q2 + λ+
1
2
.
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Reversibility continuation: Normal modes
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Vertical Nonlinear Normal Modes
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Period doubled branch
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Period doubled branch
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Schematic bifurcation diagram
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Reversibility continuation

Definition: We say that R ∈ L(Rn) is a reversibility for the
system ẋ = f (x), if Rf (x) = −f (Rx) for all x ∈ Rn.

Example: in a mechanical system changing the sign to all
velocities and integrate in negative time we get another
solution.
Poetic definition: In an reversible system the future is the
past of an alternative present.
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Reversibility continuation: R1
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Reversibility continuation: R2
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Reversibility continuation: orbits

FisMat 2015 Computational Methods in Conservative Dynamical Systems



Reversibility continuation: orbits
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Reversibility continuation: results
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Content

Lecture 4: Advanced Applications in Celestial Mechanics
Lagrange, Euler and the figure eight.
Horseshoe periodic orbits of the 3BP and 5BP.
Periodic orbits in the Sitnikov Problem
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Aplication to the figure 8 of the TBP

In 1999 A. Chenciner & R. Montgomery [Ann. Math. 152
881 (2000)] proved with variatonal techniques the
existence of a new solution of the TBP.
A remarkable periodic solution of the three body problem
C. Simó computed it numerically, coined the name
choreography, determined its stability and showed that it
belonged to a one parameter family.
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3D Three Body Problem

ẍ1 = −m2
x1 − x2

|x1 − x2|3
−m3

x1 − x3

|x1 − x3|3
,

ẍ2 = −m1
x2 − x1

|x1 − x2|3
−m3

x2 − x3

|x2 − x3|3
,

ẍ3 = −m2
x3 − x2

|x3 − x2|3
−m1

x3 − x1

|x1 − x3|3
,

7 first integrals H, P and J, permutations (if m2 = m3 )

(q1,q2,q3,p1,p2,p3) 7→ (q1,q3,q2,p1,p3,p2).

Orbital symmetry (scaling)

(q1,q2,q3,p1,p2,p3) 7→ (λ−2q1, λ
−2q2, λ

−2q3, λp1, λp2, λp3)
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Local continuation
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Global continuation: from TBP to RTBP
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Application to the RTBP

An easy to state but challenging problem with a single
conserved quantity and tons of known (and unknown)
families of PO.

ẍ − 2ẏ =
∂Ω

∂x
,

ÿ − 2ẋ =
∂Ω

∂y
,

Ω(x , y) =
1
2

(x2 + y2) +
(1− µ)

r1
+
µ

r2
+

1
2
µ(1− µ),

r2
1 = (x + µ)2 + y2,

r2
2 = (x + µ− 1)2 + y2.

Jacobi constant: C = 2Ω(x , y)− ẋ2 − ẏ2.

FisMat 2015 Computational Methods in Conservative Dynamical Systems



Application to the RTBP

An easy to state but challenging problem with a single
conserved quantity and tons of known (and unknown)
families of PO.
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RTBP: Lagrange Points

The RTBP has five equilibrium points Li that depend on µ .
The Jacobi constant on them (Ci = C(Li)) fulfills the
relation

3 = C4 = C5 < C3 < C1 < C2,

and C3 = C1 for µ = 1
2 .
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RTBP: Lagrange Families [IJBC 17 (2007)]
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RTBP: Lagrange Families [IJBC 17 (2007)]
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V1

Fig. 6. The Vertical orbits up to the first bifurcation point: The green surface contains all Vertical orbits up to the first
bifurcation point, which is shown as a thick green orbit. The part of the bifurcation diagram where these orbits are found is
indicated on the right by a white arrow.

bifurcation point on this branch through which
one can reach L3 as well, although this connecting
branch is not shown here.

We begin our tour of the periodic orbits by
discussing several well-known families which em-
anate from L1, as shown in Fig. 5. Previous work
has mapped portions of the families of periodic
orbits for various values of µ; cf. [Howell, 2001]
and references therein. Several authors have in-
vestigated bifurcations of these families, including
[Hadjidemetriou, 1975; Ichtiaroglou & Michalodim-
itrakis, 1980; Markellos, 1981] and [Hénon, 1997;
Hénon, 2001; Howell & Campbell, 1999]. The red
plane in Fig. 5 contains a subset of small-amplitude
Lyapunov orbits from Fig. 3 near L1, with selected
individual orbits shown as curves. Similarly, the
green surface contains Vertical orbits and the blue
surface contains Halo orbits. The coloring scheme
is the same as used in Fig. 4. As a visualization
aid we show orbits from which other families of pe-
riodic orbits bifurcate as thickened tubes. Accord-
ingly, the thick blue orbit which lies in the plane
of the Lyapunov orbits is the orbit from which the
Halos bifurcate. To reduce clutter in the diagram we
have only plotted the “northern” Halo orbits and
not the symmetry related “southern” Halo orbits
which are a mirror image of the “northern” Halo
orbits reflected across the x–y plane.

We now turn our attention to the green Ver-
tical orbits. In Fig. 6 we show the Vertical orbits
from their origin at L1 up to their first bifurcation

point. In this and all following figures in this section
the bifurcation diagram from Fig. 4 is shown on the
right, with the appropriate branch portion indicated
by a white arrow. As before, the bifurcation orbit
is shown as a thickened tube. Similarly, Figs. 7 and
8 show the family of Vertical orbits starting at the
first bifurcation point. As can be seen, these orbits
grow to encompass the Earth–Moon system, and
end in a period-doubling bifurcation from a family
of planar solutions. Accordingly, the green curve in
Fig. 4 touches the gray plane in two places; the first
corresponding to the creation of the family at L1
and the second at the period-doubling bifurcation
from a planar solution (B2 in Fig. 7).

There are two bifurcation points on the green
branch of Vertical solutions away from planar solu-
tions. As can be seen in Fig. 4, the first bifurcating
branch connects the red Lyapunov and green Ver-
tical families, and the orbits themselves are shown
in yellow in Fig. 11. The red plane is a collection of
Lyapunov orbits and the thick planar orbit is the
second bifurcation orbit on the Lyapunov family.
The thick green orbit is the first bifurcation orbit on
the Vertical branch, as shown in Fig. 6. The yellow
orbits are a representative collection of orbits which
connect these two bifurcation orbits. Some of the
orbits on the “Y” branch were plotted in Zagouras
and Kazantzis for the Sun–Jupiter case [Zagouras
& Kazantzis, 1979]. There is a second symmetry re-
lated branch not shown here, and the whole family
of orbits forms a loop as shown in Fig. 4.
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H1

Fig. 9. The Halo orbits (H1) up to the first bifurcation point: The blue curves are a representative collection of orbits from
the “northern” families of Halo orbits. The thick blue orbit between the Earth and Moon is the Lyapunov orbit from which
the Halo orbits bifurcate. The thick blue orbit near the Moon is the first bifurcation point on the branch of Halo orbits.

B

H2

Fig. 10. The “northern” Halo orbits (H2) after the first bifurcation point. For reference, a set of red Lyapunov orbits is also
shown. The thick blue orbit near the Moon is the first bifurcation point on the branch of “northern” Halo orbits. The thick
blue orbit which encompasses the Earth is a bifurcation point to a family of planar orbits which is not shown here. Also not
shown are the symmetry related “southern” Halo orbits, although the corresponding branch does appear in the bifurcation
diagram.

itself. We have removed the surface of orbits from
this figure in order to make the two bifurcation or-
bits easier to distinguish. Figure 10 begins where
Fig. 9 ends and shows the “northern” Halo orbits
from the first bifurcation point on the Halo branch
up to the second bifurcation point which gives rise
to a planar family of solutions, not shown here. As
can be seen in Fig. 4, the Halo branch can be con-
tinued past the planar bifurcation point to obtain
the symmetry related branch of “southern” Halos.

Accordingly, the blue family of Halo orbits in Fig. 4
is a loop.

As is evident, the connectivity of the bifurca-
tion diagram is quite complex. On the branch of
Halo orbits there are two symmetry related bifurca-
tion points. They are connected by the cyan loop of
orbits shown in Fig. 4. Two additional symmetry re-
lated bifurcation points occur on the cyan loop, and
they give rise to the magenta branch which twice
intersects the cyan loop transcritically.
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Y

Fig. 11. A family of orbits (Y) connecting the Lyapunov and Vertical orbits. The red plane is a collection of Lyapunov orbits
and the thick red orbit is the second bifurcation point in the Lyapunov family. The thick green orbit is the first bifurcation
point on the Vertical branch, as also shown in Fig. 6. The yellow orbits are a representative collection of orbits which connect
these two bifurcation points. There is a second symmetry related branch not shown here which consists of the above orbits
reflected across the x–z plane. Accordingly, the whole family of orbits forms a loop as shown in Fig. 4.

C

Fig. 12. The cyan curves are a representative collection of orbits which emanate from the first bifurcation point on the Halo
family. The elliptical bifurcation orbit close to the Moon from Fig. 9 corresponds to the small thick cyan orbit. The thick
cyan figure-8 orbit in the middle of the figure is a bifurcation orbit that connects with a family of “Vertical”-like orbits which
emanates from L4.

On the cyan loop there are four symmetric
segments separated by the four bifurcation points.
Figure 12 shows a representative collection of orbits
on the cyan loop from one of these segments. The
other segments have the same structure as Fig. 12
except that they are reflected across the x–y plane
and/or the x–z plane. The small thick cyan orbit
corresponds to the larger bifurcation orbit in Fig. 9.

The thick cyan figure-8 orbit in the middle of Fig. 12
is a bifurcation orbit and connects with the magenta
family.

The magenta family of orbits is of particular
interest in that it connects the “Vertical”-like or-
bits from L4 with the “Vertical”-like orbits from L5.
In fact, the “Vertical” orbits of L4 and L5 are the
same family of orbits. The magenta family of orbits
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Why the name Horseshoe?
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Two co-orbital satellites of Saturn

Janus and Epimetheus are satellites of Saturn with
coplanar orbits that are very close to each other.
mS = 5.69× 1026kg,RS = 60268Km,
mJ = 1.98× 1018Kg,196× 192× 150 and
mE = 5.50× 1017Kg,144× 108× 98 .
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The orbits

The motion of both satellites occurs in the same plane.
Most of the time the satellites do not feel each other (two
body Kepler solution).
According to Kepler’s laws the inner satellite goes faster
than the outer one and eventually after some full
revolutions will catch it (encounter).
Only when they are close to each other they feel the
mutual gravitational attraction (encounter).
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The orbits

r =
a(1− e2)

1− e cos θ
aJ = 151460,eJ = 0.0068
aE = 151410,eE = 0.0098
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A closer look at the encounter

The inner body does not overtake the outer one but they
interchange orbits; the inner becomes outer and
vice-versa.
The defining property of a horseshoe orbit is this no
overtaking condition.
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Horseshoe in a rotating frame; scheme
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Horseshoe in a rotating frame; calculated
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Stability of the Lagrange points: Horseshoe orbit
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Stability of the Lagrange points: Horseshoe orbit
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Stability of the Lagrange points: Horseshoe orbit
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Stability of the Lagrange points: Horseshoe orbit
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Bifurcation diagram
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2k+1 Horseshoe solution
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5 body Horseshoe connected to Lagrange
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Conclusions and open problems

January 2016: DANCE RTNS Kam Theorem by A. Celleti.
Google for whooping solution three body.
Jgv talk at the workshop.
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