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Excercises from Emilio’s talk

Find all the solutions of:

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Emilio could find the solutions by hand, but

How do we get the answer with the computer?

or, how do we proceed in realistic examples?
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Goal of the Lecutres

Goal:
Characterize the solutions for all value of the initial conditions,
parameter values and even "nearby" systems for the ODE:

{
u′(t) = G(u, λ), G : Ω ⊂ Rn × R→ Rn,
u(0) = u0, u ∈ Rn, λ ∈ R.

Why looking for zeros?
Equilibria, periodic orbits, stability, bifurcations. . .

Qualitative vs quantitative analysis of differential
equations.
From local analysis to a global understanding of the
system via the continuation of special solutions.
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What is the best computational approach?

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but
understand what you are doing and be careful.

In this course we will follow the second path with a glance at
the first. (AUTO and MATLAB).
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Mathematical tools

Taylor’s theorem.
Locating zeros: The elevator’s theorem and Newton’s
method.
Implicit function theorem.
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Elevator’s theorem

This elevator takes you
to the second floor
without passing
through the first floor.

This is imposible
signed: Bolzano.
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Newton’s method

Suppose u0 is close to a zero of

G(u) = 0.

How do we compute a u1 even closer to the zero?
Replace the left hand side by its linear part

G(u1) ' G(u0) + J(u1 − u0) ' 0,

where J = Gu(u0) is the Jacobian.

u1 = u0 − J−1G(u0).

In practice, solve
J∆u = −G(u0),

and
u1 = u0 + ∆u

and iterate up to convergence. (see Ch. 10 Kuznetsov)
FisMat 2015 Computational Methods in Dynamical Systems



The Implicit Function Theorem

The Implicit Function Theorem

Let G : Rn × R → Rn satisfy

(i) G(u0, λ0) = 0 , u0 ∈ Rn , λ0 ∈ R .

(ii) Gu(u0, λ0) is nonsingular (i.e., u0 is an isolated solution) ,

(iii) G and Gu are smooth near u0 .

Then there exists a unique, smooth solution family u(λ) such that

◦ G(u(λ), λ) = 0 , for all λ near λ0 ,

◦ u(λ0) = u0 .

PROOF : See a good Analysis book · · ·
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Persistence of solutions

Consider the equation

G(u, λ) = 0 , u , G(·, ·) ∈ Rn , λ ∈ R .

Let
x ≡ (u , λ) .

Then the equation can be written

G(x) = 0 , G : Rn+1 → Rn .

DEFINITION.

A solution x0 of G(x) = 0 is regular if the matrix

G0
x ≡ Gx(x0) , (with n rows and n+ 1 columns)

has maximal rank, i.e., if
Rank(G0

x) = n .

9
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In the parameter formulation,

G(u, λ) = 0 ,

we have

Rank(G0
x) = Rank(G0

u | G0
λ) = n ⇐⇒





(i) G0
u is nonsingular,

or

(ii)





dim N (G0
u) = 1 ,

and
G0
λ 6∈ R(G0

u) .

Above,

N (G0
u) denotes the null space of G0

u ,

and

R(G0
u) denotes the range of G0

u ,

i.e., the linear space spanned by the n columns of G0
u .

10
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THEOREM. Let
x0 ≡ ( u0 , λ0 )

be a regular solution of
G(x) = 0 .

Then, near x0 , there exists a unique one-dimensional solution family

x(s) with x(0) = x0 .

PROOF. Since

Rank( G0
x ) = Rank( G0

u | G0
λ ) = n ,

then either G0
u is nonsingular and by the IFT we have

u = u(λ) near x0 ,

or else we can interchange colums in the Jacobian G0
x to see that the solution

can locally be parametrized by one of the components of u .

Thus a unique solution family passes through a regular solution. •

11
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NOTE:

◦ Such a solution family is sometimes also called a solution branch .

◦ Case (ii) above is that of a simple fold , to be discussed later.

◦ Thus even near a simple fold there is a unique solution family.

◦ However, near such a fold, the family can not be parametrized by λ.

12
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Parameter continuation

Parameter Continuation

Here the continuation parameter is taken to be λ .

Suppose we have a solution (u0, λ0) of

G(u, λ) = 0 ,

as well as the direction vector u̇0 .

Here

u̇ ≡ du

dλ
.

We want to compute the solution u1 at λ1 ≡ λ0 + ∆λ .

43
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Figure 10: Graphical interpretation of parameter-continuation.
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To solve the equation
G(u1 , λ1) = 0 ,

for u1 (with λ = λ1 fixed) we use Newton’s method

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = − G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 .

ν = 0, 1, 2, · · · .

As initial approximation use

u
(0)
1 = u0 + ∆λ u̇0 .

If
Gu(u1, λ1) is nonsingular ,

and ∆λ sufficiently small, then the Newton convergence theory guarantees that
this iteration will converge.

45
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After convergence, the new direction vector u̇1 can be computed by solving

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

This equation follows from differentiating

G(u(λ), λ) = 0 ,

with respect to λ at λ = λ1 .

NOTE:

◦ u̇1 can be computed without another LU -factorization of Gu(u1, λ1) .

◦ Thus the extra work to find u̇1 is negligible.

46
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Exercise

Excercise for Lecture 1

When will the parameter continuation fail?
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Pseudoarclength continuation

Keller’s Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold.

Suppose we have a solution (u0, λ0) of

G( u , λ ) = 0 ,

as well as the direction vector (u̇0, λ̇0) of the solution branch.

Pseudo-arclength continuation solves the following equations for (u1, λ1) :

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

See Figure 11 for a graphical interpretation.
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Pseudoarclength continuation
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Figure 11: Graphical interpretation of pseudo-arclength continuation.
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Pseudoarclength continuation

Solve the equations

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

for (u1, λ1) by Newton’s method:




(G1
u)(ν) (G1

λ)
(ν)

u̇∗0 λ̇0



(

∆u
(ν)
1

∆λ
(ν)
1

)
= −




G(u
(ν)
1 , λ

(ν)
1 )

(u
(ν)
1 − u0)∗u̇0 + (λ

(ν)
1 − λ0)λ̇0 −∆s


 .

Next direction vector :



G1
u G1

λ

u̇∗0 λ̇0



(

u̇1

λ̇1

)
=




0

1


 .

53
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Pseudoarclength continuation

NOTE:

◦ In practice (u̇1, λ̇1) can be computed with one extra backsubstitution.

◦ The orientation of the branch is preserved if ∆s is sufficiently small.

◦ The direction vector must be rescaled, so that indeed ‖ u̇1 ‖2 + λ̇2
1 = 1 .

54
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Pseudoarclength continuation

THEOREM.

The Jacobian of the pseudo-arclength system is nonsingular

at a regular solution point.

PROOF. Let
x ≡ (u , λ) ∈ Rn+1 .

Then pseudo-arclength continuation can be written as

G(x1) = 0 ,

(x1 − x0)∗ ẋ0 − ∆s = 0 , (‖ ẋ0 ‖ = 1 ) .

(See Figure 12 for a graphical interpretation.)

55
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Pseudoarclength continuation

∆ s��
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Figure 12: Parameter-independent pseudo-arclength continuation.
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Pseudoarclength continuation

The matrix in Newton’s method at ∆s = 0 is

(
G0

x

ẋ∗0

)
.

At a regular solution we have

N (G0
x) = Span{ẋ0} .

We must show that

(
G0

x

ẋ∗0

)

is nonsingular at a regular solution.

57
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Pseudoarclength continuation

If on the contrary
(

G0
x

ẋ∗0

)

is singular then

G0
x z = 0 and ẋ∗0 z = 0 ,

for some vector z 6= 0 .

Thus

z = c ẋ0 , for some constant c .

But then
0 = ẋ∗0 z = c ẋ∗0 ẋ0 = c ‖ ẋ0 ‖2 = c ,

so that z = 0 , which is a contradiction. •

58
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Recall the ingredients

The building blocks for the continuation of solutions are:
Newton’s method of the properly chosen function G(x).
Pseudoarclength continuation.
Convergence, step control and accuracy.
Appropriate test function.
Data handling and representation.

All these in an efficient way.
Extensions:

detect and identify bifurcation points
branch switching
homo- and heteroclinic orbits
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Ready to solve the excercises

Compute the bifurcation diagram of

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Exercise Continue the perturbed pitchfork case. (add a +ε
term, and continue in ε.
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Non trivial Example I

A Predator-Prey Model

(AUTO demo pp2.)





u′1 = 3u1(1− u1)− u1u2 − λ(1− e−5u1 ) ,

u′2 = −u2 + 3u1u2 .

Here u1 may be thought of as “fish” and u2 as “sharks”, while the term

λ (1− e−5u1 ) ,

represents “fishing”, with “fishing-quota” λ .

When λ = 0 the stationary solutions are

3u1(1− u1)− u1u2 = 0

−u2 + 3u1u2 = 0




⇒ (u1, u2) = (0, 0) , (1, 0) , (

1

3
, 2) .

16
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The Jacobian matrix is

Gu =

(
3− 6u1 − u2 − 5λe

−5u1 −u1

3u2 −1 + 3u1

)
= Gu(u1, u2;λ) .

Gu(0, 0; 0) =

(
3 0
0 −1

)
; eigenvalues 3,-1 (unstable) .

Gu(1, 0; 0) =

(
−3 −1

0 2

)
; eigenvalues -3,2 (unstable) .

Gu(
1

3
, 2; 0) =

(
−1 −1

3

6 0

)
; eigenvalues





(−1− µ)(−µ) + 2 = 0
µ2 + µ+ 2 = 0

µ± = −1±√−7
2

Re(µ±) < 0 (stable) .

All three Jacobians at λ = 0 are nonsingular.

Thus, by the IFT, all three stationary points persist for (small) λ 6= 0 .

17
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In this problem we can explicitly find all solutions (see Figure 1) :

Branch I :

(u1, u2) = (0, 0) .

Branch II :

u2 = 0 , λ =
3u1(1− u1)

1− e−5u1
.

(Note that lim
u1 → 0

λ = lim
u1 → 0

3(1− 2u1)

5e−5u1
=

3

5
.)

Branch III :

u1 =
1

3
,

2

3
− 1

3
u2 − λ(1−e−5/3) = 0 ⇒ u2 = 2−3λ(1−e−5/3) .

These solution families intersect at two branch points, one of which is

(u1, u2, λ) = (0, 0, 3/5) .

18
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 1: Stationary solution families of the predator-prey model. Solid/dashed
lines denote stable/unstable solutions. Note the fold , the bifurcations (open
squares), and the Hopf bifurcation (red square).
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Figure 2: Stationary solution families of the predator-prey model, showing fish
versus quota. Solid/dashed lines denote stable/unstable solutions.
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◦ Stability of branch I :

Gu((0, 0);λ) =

(
3− 5λ 0

0 −1

)
; eigenvalues 3− 5λ, − 1 .

Hence the trivial solution is :

unstable if λ < 3/5 ,

and

stable if λ > 3/5 ,

as indicated in Figure 2.

◦ Stability of branch II :

This family has no stable positive solutions.

21
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◦ Stability of branch III :

At λH ≈ 0.67 ,

(the red square in Figure 2) the complex eigenvalues cross the imaginary axis.

This crossing is a Hopf bifurcation, a topic to be discussed later.

Beyond λH there are periodic solutions whose period T increases as λ in-
creases. (See Figure 4 for some representative periodic orbits.)

The period becomes infinite at λ = λ∞ ≈ 0.70 .

This final orbit is called a heteroclinic cycle.

22
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Figure 3: Stationary (blue) and periodic (red) solution families of the predator-
prey model.
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Figure 4: Some periodic solutions of the predator-prey model. The largest orbits
are very close to a heteroclinic cycle.
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From Figure 3 we can deduce the solution behavior for (slowly) increasing λ :

- Branch III is followed until λH ≈ 0.67 .

- Periodic solutions of increasing period until λ = λ∞ ≈ 0.70 .

- Collapse to trivial solution (Branch I).

EXERCISE.

Use AUTO to repeat the numerical calculations (demo pp2) .

Sketch phase plane diagrams for λ = 0, 0.5, 0.68, 0.70, 0.71 .

25
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Nontrivial example II: equilibria of the loaded arch

y ′′ = −y +
y√

ρ2 + y2
+ µ

FisMat 2015 Computational Methods in Dynamical Systems



An example of oscillations: Hopf theorem

Analyze

du1

dt
= αu1 − u2 − βu1(u2

1 + u2
2) (1)

du2

dt
= u1 + αu2 − βu2(u2

1 + u2
2)

FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The Hopf Bifurcation Theorem

THEOREM. Suppose that along a stationary solution family (u(λ), λ) , of

u′ = f(u, λ) ,

a complex conjugate pair of eigenvalues

α(λ) ± i β(λ) ,

of fu(u(λ), λ) crosses the imaginary axis transversally, i.e., for some λ0 ,

α(λ0) = 0 , β(λ0) 6= 0 , and α̇(λ0) 6= 0 .

Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation, i.e., a family of periodic solutions bifurcates
from the stationary solution at (u0, λ0) . ◦

NOTE: The assumptions also imply that f0
u is nonsingular, so that the station-

ary solution family can indeed be parametrized locally using λ .

168FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The BVP Approach.

Consider

u′(t) = f( u(t) , λ ) , u(·) , f(·) ∈ Rn , λ ∈ R .

Fix the interval of periodicity by the transformation

t → t

T
.

Then the equation becomes

u′(t) = T f( u(t) , λ ) , u(·) , f(·) ∈ Rn , T , λ ∈ R .

and we seek solutions of period 1 , i.e.,

u(0) = u(1) .

Note that the period T is one of the unknowns.

190FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The above equations do not uniquely specify u and T :

Assume that we have computed

( uk−1(·) , Tk−1 , λk−1 ) ,

and we want to compute the next solution

( uk(·) , Tk , λk ) .

Specifically, uk(t) can be translated freely in time:

If uk(t) is a periodic solution, then so is

uk(t+ σ) ,

for any σ .

Thus, a “phase condition” is needed.

191FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

An example is the Poincaré orthogonality condition

(uk(0) − uk−1(0))∗ u
′
k−1(0) = 0 .

(Below we derive a numerically more suitable phase condition.)

u k-1 (0)

��

��

u
k-1 (0)

u (0)
k

Figure 48: Graphical interpretation of the Poincaré phase condition.
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Hopf theorem

Integral Phase Condition

If ũk(t) is a solution then so is

ũk(t+ σ) ,

for any σ .

We want the solution that minimizes

D(σ) ≡
∫ 1

0
‖ ũk(t+ σ) − uk−1(t) ‖2

2 dt .

The optimal solution
ũk(t+ σ̂) ,

must satisfy the necessary condition

D′(σ̂) = 0 .

193FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

Differentiation gives the necessary condition

∫ 1

0
( ũk(t+ σ̂) − uk−1(t) )∗ ũ′k(t+ σ̂) dt = 0 .

Writing
uk(t) ≡ ũk(t+ σ̂) ,

gives ∫ 1

0
( uk(t) − uk−1(t) )∗ u′k(t) dt = 0 .

Integration by parts, using periodicity, gives

∫ 1
0 uk(t)

∗ u
′
k−1(t) dt = 0 .

This is the integral phase condition.

194FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

Pseudo-Arclength Continuation

We use pseudo-arclength continuation to follow a family of periodic solutions.

This allows calculation past folds along a family of periodic solutions.

It also allows calculation of a “vertical family” of periodic solutions.

For periodic solutions the pseudo-arclength equation is

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .
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Hopf theorem

In summary, we have the following equations for continuing periodic solutions:

u′k(t) = T f( uk(t) , λk ) ,

uk(0) = uk(1) ,

∫ 1

0
uk(t)

∗ u
′
k−1(t) dt = 0 ,

with pseudo-arclength continuation equation

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .

Here

u(·) , f(·) ∈ Rn , λ , T ∈ R .
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Hopf theorem

Starting at a Hopf Bifurcation

Let
(u0 , λ0) ,

be a Hopf bifurcation point, i.e.,

fu( u0 , λ0 ) ,

has a simple conjugate pair of purely imaginary eigenvalues

± i ω0 , ω0 6= 0 ,

and no other eigenvalues on the imaginary axis.

Also, the pair crosses the imaginary axis transversally with respect to λ .

By the Hopf Bifurcation Theorem, a family of periodic solutions bifurcates.
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Hopf theorem

Asymptotic estimates for periodic solutions near the Hopf bifurcation :

u( t ; ε ) = u0 + ε φ(t) + O(ε2) ,

T (ε) = T0 + O(ε2) ,

λ(ε) = λ0 + O(ε2) .

Here ε locally parametrizes the family of periodic solutions.

T (ε) denotes the period, and

T0 =
2π

ω0

.

The function φ(t) is the normalized nonzero periodic solution of the linearized,
constant coefficient problem

φ′(t) = fu(u0, λ0) φ(t) .
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Hopf theorem

To compute a first periodic solution

( u1(·) , T1 , λ1 ) ,

near a Hopf bifurcation (u0, λ0) , we still have

u′1(t) = T f( u1(t) , λ1 ) , (10)

u1(0) = u1(1) . (11)

Initial estimates for Newton’s method are

u
(0)
1 (t) = u0 + ∆s φ(t) , T

(0)
1 = T0 , λ

(0)
1 = λ0 .
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Hopf theorem

Above, φ(t) is a nonzero solution of the time-scaled, linearized equations

φ′(t) = T0 fu(u0, λ0) φ(t) , φ(0) = φ(1) ,

namely,

φ(t) = sin(2πt) ws + cos(2πt) wc ,

where
( ws , wc ) ,

is a null vector in

( −ω0 I fu(u0, λ0)
fu(u0, λ0) ω0 I

) (
ws

wc

)
=

(
0
0

)
, ω0 =

2π

T0

.

The nullspace is generically two-dimensional since
(−wc

ws

)
,

is also a null vector.
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Hopf theorem

For the phase equation we “align” u1 with φ(t) , i.e.,

∫ 1
0 u1(t)∗ φ′(t) dt = 0 .

Since

λ̇0 = Ṫ0 = 0 ,

the pseudo-arclength equation for the first step reduces to

∫ 1
0 ( u1(t)− u0(t) )∗ φ(t) dt = ∆s .
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Numerical details

AUTO solves BVP with orthogonal collocation with
adaptative mesh selection.
Floquet multipliers are computed for free.
The code is partially parallelized (openmp and mpi).
AUTO can solve in a efficient way system of moderate to
large dimensions.
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A difficult example: Bogdanov-Takens bifurcation

Analyze

du1

dt
= u2

du2

dt
= −n + bu2 + u2

1 + u1u2

Some results on homoclinic and heteroclinic connections in
planar systems, A. Gasull, H. Giacomini and J. Torregrosa
(Nonlinearity)
See also Kuznetsov’s book.
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Unusual applications of continuation.

Zeros, continuation and bifurcations.

Any problem that may be formulated as G(u, λ) = 0 is suitable
for continuation.

What about computing eigenvalues?
and initial value problems?
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Computing eigenvalues with AUTO

What are the eigenvaues of

A =




8 1 6
3 5 7
4 9 2


?

with Matlab,

eig(A)= [15.0000 4.89990 -4.89990 ]

with AUTO

(A− λI)v = 0
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Manifold computation by continuation

Example: The Lorenz Equations

(AUTO demos lor, lrz, man.)

x′ = σ (y − x) ,

y′ = ρ x − y − x z ,

z′ = x y − β z ,

where
σ = 10 and β = 8/3 .
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Figure 68: Bifurcation diagram of the Lorenz equations.
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NOTE:

◦ The zero solution is unstable for ρ > 1 .

◦ Two nonzero stationary solutions bifurcate at ρ = 1 .

◦ The nonzero stationary solutions become unstable for ρ > ρH .

◦ At ρH ( ρH ≈ 24.7 ) there are Hopf bifurcations.

◦ Unstable periodic solutions emanate from each Hopf bifurcation.

◦ These families end in homoclinic orbits (infinite period) at ρ ≈ 13.9 .

◦ For ρ > ρH there is the famous Lorenz attractor.
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Figure 69: Unstable periodic orbits of the Lorenz equations.
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The Lorenz Manifold

◦ For ρ > 1 the origin is a saddle point .

◦ The Jacobian has two negative eigenvalues and one positive eigenvalue.

◦ The two negative eigenvalues give rise to a 2D stable manifold .

◦ This manifold is known as as the Lorenz Manifold .

◦ The Lorenz Manifold helps us understand the Lorenz attractor .

Discrete and Continuous Dynamical Systems, 2010; (to appear).
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The Lorenz Equations: rho = 60

Figure 70: Three orbits whose initial conditions agree to >11 decimal places !
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Figure 71: A small portion of a Lorenz Manifold · · ·

273

FisMat 2015 Computational Methods in Dynamical Systems



Figure 72: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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Figure 73: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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Figure 74: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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NOTE:

◦ As shown, crossings of the Lorenz manifold with a sphere can be located.

◦ Crossings of the Lorenz manifold with the plane z = ρ− 1 can be located.

◦ Connections between the origin and the nonzero equilibria can be located.

◦ There are subtle variations on the algorithm !
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Lorenz Section: rho= 60

Figure 75: Crossings of the Lorenz Manifold with the plane z = ρ− 1
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