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Excercises from Emilio’s talk

Find all the solutions of:

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Emilio could find the solutions by hand, but

How do we get the answer with the computer?

or, how do we proceed in realistic examples?

FisMat 2015 Computational Methods in Dynamical Systems



Excercises from Emilio’s talk

Find all the solutions of:

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Emilio could find the solutions by hand, but

How do we get the answer with the computer?

or, how do we proceed in realistic examples?

FisMat 2015 Computational Methods in Dynamical Systems



Excercises from Emilio’s talk

Find all the solutions of:

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Emilio could find the solutions by hand, but

How do we get the answer with the computer?

or, how do we proceed in realistic examples?

FisMat 2015 Computational Methods in Dynamical Systems



Excercises from Emilio’s talk

Find all the solutions of:

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Emilio could find the solutions by hand, but

How do we get the answer with the computer?

or, how do we proceed in realistic examples?

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Simulation vs continuation

FisMat 2015 Computational Methods in Dynamical Systems



Goal of the Lecutres

Goal:
Characterize the solutions for all value of the initial conditions,
parameter values and even "nearby" systems for the ODE:

{
u′(t) = G(u, λ), G : Ω ⊂ Rn × R→ Rn,
u(0) = u0, u ∈ Rn, λ ∈ R.

Why looking for zeros?
Equilibria, periodic orbits, stability, bifurcations. . .

Qualitative vs quantitative analysis of differential
equations.
From local analysis to a global understanding of the
system via the continuation of special solutions.
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What is the best computational approach?

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but
understand what you are doing and be careful.

In this course we will follow the second path with a glance at
the first. (AUTO and MATLAB).
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Mathematical tools

Taylor’s theorem.
Locating zeros: The elevator’s theorem and Newton’s
method.
Implicit function theorem.
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Elevator’s theorem

This elevator takes you
to the second floor
without passing
through the first floor.

This is imposible
signed: Bolzano.
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Newton’s method

Suppose u0 is close to a zero of

G(u) = 0.

How do we compute a u1 even closer to the zero?
Replace the left hand side by its linear part

G(u1) ' G(u0) + J(u1 − u0) ' 0,

where J = Gu(u0) is the Jacobian.

u1 = u0 − J−1G(u0).

In practice, solve
J∆u = −G(u0),

and
u1 = u0 + ∆u

and iterate up to convergence. (see Ch. 10 Kuznetsov)
FisMat 2015 Computational Methods in Dynamical Systems



The Implicit Function Theorem

The Implicit Function Theorem

Let G : Rn × R → Rn satisfy

(i) G(u0, λ0) = 0 , u0 ∈ Rn , λ0 ∈ R .

(ii) Gu(u0, λ0) is nonsingular (i.e., u0 is an isolated solution) ,

(iii) G and Gu are smooth near u0 .

Then there exists a unique, smooth solution family u(λ) such that

◦ G(u(λ), λ) = 0 , for all λ near λ0 ,

◦ u(λ0) = u0 .

PROOF : See a good Analysis book · · ·
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Persistence of solutions

Consider the equation

G(u, λ) = 0 , u , G(·, ·) ∈ Rn , λ ∈ R .

Let
x ≡ (u , λ) .

Then the equation can be written

G(x) = 0 , G : Rn+1 → Rn .

DEFINITION.

A solution x0 of G(x) = 0 is regular if the matrix

G0
x ≡ Gx(x0) , (with n rows and n+ 1 columns)

has maximal rank, i.e., if
Rank(G0

x) = n .

9
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In the parameter formulation,

G(u, λ) = 0 ,

we have

Rank(G0
x) = Rank(G0

u | G0
λ) = n ⇐⇒





(i) G0
u is nonsingular,

or

(ii)





dim N (G0
u) = 1 ,

and
G0
λ 6∈ R(G0

u) .

Above,

N (G0
u) denotes the null space of G0

u ,

and

R(G0
u) denotes the range of G0

u ,

i.e., the linear space spanned by the n columns of G0
u .

10
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THEOREM. Let
x0 ≡ ( u0 , λ0 )

be a regular solution of
G(x) = 0 .

Then, near x0 , there exists a unique one-dimensional solution family

x(s) with x(0) = x0 .

PROOF. Since

Rank( G0
x ) = Rank( G0

u | G0
λ ) = n ,

then either G0
u is nonsingular and by the IFT we have

u = u(λ) near x0 ,

or else we can interchange colums in the Jacobian G0
x to see that the solution

can locally be parametrized by one of the components of u .

Thus a unique solution family passes through a regular solution. •

11
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NOTE:

◦ Such a solution family is sometimes also called a solution branch .

◦ Case (ii) above is that of a simple fold , to be discussed later.

◦ Thus even near a simple fold there is a unique solution family.

◦ However, near such a fold, the family can not be parametrized by λ.

12
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Parameter continuation

Parameter Continuation

Here the continuation parameter is taken to be λ .

Suppose we have a solution (u0, λ0) of

G(u, λ) = 0 ,

as well as the direction vector u̇0 .

Here

u̇ ≡ du

dλ
.

We want to compute the solution u1 at λ1 ≡ λ0 + ∆λ .

43
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Figure 10: Graphical interpretation of parameter-continuation.
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To solve the equation
G(u1 , λ1) = 0 ,

for u1 (with λ = λ1 fixed) we use Newton’s method

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = − G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 .

ν = 0, 1, 2, · · · .

As initial approximation use

u
(0)
1 = u0 + ∆λ u̇0 .

If
Gu(u1, λ1) is nonsingular ,

and ∆λ sufficiently small, then the Newton convergence theory guarantees that
this iteration will converge.

45
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After convergence, the new direction vector u̇1 can be computed by solving

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

This equation follows from differentiating

G(u(λ), λ) = 0 ,

with respect to λ at λ = λ1 .

NOTE:

◦ u̇1 can be computed without another LU -factorization of Gu(u1, λ1) .

◦ Thus the extra work to find u̇1 is negligible.

46
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Exercise

Excercise for Lecture 1

When will the parameter continuation fail?
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Pseudoarclength continuation

Keller’s Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold.

Suppose we have a solution (u0, λ0) of

G( u , λ ) = 0 ,

as well as the direction vector (u̇0, λ̇0) of the solution branch.

Pseudo-arclength continuation solves the following equations for (u1, λ1) :

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

See Figure 11 for a graphical interpretation.
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Pseudoarclength continuation
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Figure 11: Graphical interpretation of pseudo-arclength continuation.
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Pseudoarclength continuation

Solve the equations

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

for (u1, λ1) by Newton’s method:




(G1
u)(ν) (G1

λ)
(ν)

u̇∗0 λ̇0



(

∆u
(ν)
1

∆λ
(ν)
1

)
= −




G(u
(ν)
1 , λ

(ν)
1 )

(u
(ν)
1 − u0)∗u̇0 + (λ

(ν)
1 − λ0)λ̇0 −∆s


 .

Next direction vector :



G1
u G1

λ

u̇∗0 λ̇0



(

u̇1

λ̇1

)
=




0

1


 .

53
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Pseudoarclength continuation

NOTE:

◦ In practice (u̇1, λ̇1) can be computed with one extra backsubstitution.

◦ The orientation of the branch is preserved if ∆s is sufficiently small.

◦ The direction vector must be rescaled, so that indeed ‖ u̇1 ‖2 + λ̇2
1 = 1 .

54
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Pseudoarclength continuation

THEOREM.

The Jacobian of the pseudo-arclength system is nonsingular

at a regular solution point.

PROOF. Let
x ≡ (u , λ) ∈ Rn+1 .

Then pseudo-arclength continuation can be written as

G(x1) = 0 ,

(x1 − x0)∗ ẋ0 − ∆s = 0 , (‖ ẋ0 ‖ = 1 ) .

(See Figure 12 for a graphical interpretation.)

55
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Pseudoarclength continuation
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Figure 12: Parameter-independent pseudo-arclength continuation.
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Pseudoarclength continuation

The matrix in Newton’s method at ∆s = 0 is

(
G0

x

ẋ∗0

)
.

At a regular solution we have

N (G0
x) = Span{ẋ0} .

We must show that

(
G0

x

ẋ∗0

)

is nonsingular at a regular solution.

57
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Pseudoarclength continuation

If on the contrary
(

G0
x

ẋ∗0

)

is singular then

G0
x z = 0 and ẋ∗0 z = 0 ,

for some vector z 6= 0 .

Thus

z = c ẋ0 , for some constant c .

But then
0 = ẋ∗0 z = c ẋ∗0 ẋ0 = c ‖ ẋ0 ‖2 = c ,

so that z = 0 , which is a contradiction. •

58
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Recall the ingredients

The building blocks for the continuation of solutions are:
Newton’s method of the properly chosen function G(x).
Pseudoarclength continuation.
Convergence, step control and accuracy.
Appropriate test function.
Data handling and representation.

All these in an efficient way.
Extensions:

detect and identify bifurcation points
branch switching
homo- and heteroclinic orbits
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Ready to solve the excercises

Compute the bifurcation diagram of

f (x , λ) = λ+ x2

f (x , λ) = (x − λ)x
f (x , λ) = λx − x3

for all values of x and λ.

Exercise Continue the perturbed pitchfork case. (add a +ε
term, and continue in ε.
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Non trivial Example I

A Predator-Prey Model

(AUTO demo pp2.)





u′1 = 3u1(1− u1)− u1u2 − λ(1− e−5u1 ) ,

u′2 = −u2 + 3u1u2 .

Here u1 may be thought of as “fish” and u2 as “sharks”, while the term

λ (1− e−5u1 ) ,

represents “fishing”, with “fishing-quota” λ .

When λ = 0 the stationary solutions are

3u1(1− u1)− u1u2 = 0

−u2 + 3u1u2 = 0




⇒ (u1, u2) = (0, 0) , (1, 0) , (

1

3
, 2) .

16
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The Jacobian matrix is

Gu =

(
3− 6u1 − u2 − 5λe

−5u1 −u1

3u2 −1 + 3u1

)
= Gu(u1, u2;λ) .

Gu(0, 0; 0) =

(
3 0
0 −1

)
; eigenvalues 3,-1 (unstable) .

Gu(1, 0; 0) =

(
−3 −1

0 2

)
; eigenvalues -3,2 (unstable) .

Gu(
1

3
, 2; 0) =

(
−1 −1

3

6 0

)
; eigenvalues





(−1− µ)(−µ) + 2 = 0
µ2 + µ+ 2 = 0

µ± = −1±√−7
2

Re(µ±) < 0 (stable) .

All three Jacobians at λ = 0 are nonsingular.

Thus, by the IFT, all three stationary points persist for (small) λ 6= 0 .

17
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In this problem we can explicitly find all solutions (see Figure 1) :

Branch I :

(u1, u2) = (0, 0) .

Branch II :

u2 = 0 , λ =
3u1(1− u1)

1− e−5u1
.

(Note that lim
u1 → 0

λ = lim
u1 → 0

3(1− 2u1)

5e−5u1
=

3

5
.)

Branch III :

u1 =
1

3
,

2

3
− 1

3
u2 − λ(1−e−5/3) = 0 ⇒ u2 = 2−3λ(1−e−5/3) .

These solution families intersect at two branch points, one of which is

(u1, u2, λ) = (0, 0, 3/5) .

18
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Figure 1: Stationary solution families of the predator-prey model. Solid/dashed
lines denote stable/unstable solutions. Note the fold , the bifurcations (open
squares), and the Hopf bifurcation (red square).
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Figure 2: Stationary solution families of the predator-prey model, showing fish
versus quota. Solid/dashed lines denote stable/unstable solutions.
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◦ Stability of branch I :

Gu((0, 0);λ) =

(
3− 5λ 0

0 −1

)
; eigenvalues 3− 5λ, − 1 .

Hence the trivial solution is :

unstable if λ < 3/5 ,

and

stable if λ > 3/5 ,

as indicated in Figure 2.

◦ Stability of branch II :

This family has no stable positive solutions.

21
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◦ Stability of branch III :

At λH ≈ 0.67 ,

(the red square in Figure 2) the complex eigenvalues cross the imaginary axis.

This crossing is a Hopf bifurcation, a topic to be discussed later.

Beyond λH there are periodic solutions whose period T increases as λ in-
creases. (See Figure 4 for some representative periodic orbits.)

The period becomes infinite at λ = λ∞ ≈ 0.70 .

This final orbit is called a heteroclinic cycle.

22
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Figure 3: Stationary (blue) and periodic (red) solution families of the predator-
prey model.
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Figure 4: Some periodic solutions of the predator-prey model. The largest orbits
are very close to a heteroclinic cycle.

24
FisMat 2015 Computational Methods in Dynamical Systems



From Figure 3 we can deduce the solution behavior for (slowly) increasing λ :

- Branch III is followed until λH ≈ 0.67 .

- Periodic solutions of increasing period until λ = λ∞ ≈ 0.70 .

- Collapse to trivial solution (Branch I).

EXERCISE.

Use AUTO to repeat the numerical calculations (demo pp2) .

Sketch phase plane diagrams for λ = 0, 0.5, 0.68, 0.70, 0.71 .

25
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Nontrivial example II: equilibria of the loaded arch

y ′′ = −y +
y√

ρ2 + y2
+ µ

FisMat 2015 Computational Methods in Dynamical Systems



An example of oscillations: Hopf theorem

Analyze

du1

dt
= αu1 − u2 − βu1(u2

1 + u2
2) (1)

du2

dt
= u1 + αu2 − βu2(u2

1 + u2
2)

FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The Hopf Bifurcation Theorem

THEOREM. Suppose that along a stationary solution family (u(λ), λ) , of

u′ = f(u, λ) ,

a complex conjugate pair of eigenvalues

α(λ) ± i β(λ) ,

of fu(u(λ), λ) crosses the imaginary axis transversally, i.e., for some λ0 ,

α(λ0) = 0 , β(λ0) 6= 0 , and α̇(λ0) 6= 0 .

Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation, i.e., a family of periodic solutions bifurcates
from the stationary solution at (u0, λ0) . ◦

NOTE: The assumptions also imply that f0
u is nonsingular, so that the station-

ary solution family can indeed be parametrized locally using λ .

168FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The BVP Approach.

Consider

u′(t) = f( u(t) , λ ) , u(·) , f(·) ∈ Rn , λ ∈ R .

Fix the interval of periodicity by the transformation

t → t

T
.

Then the equation becomes

u′(t) = T f( u(t) , λ ) , u(·) , f(·) ∈ Rn , T , λ ∈ R .

and we seek solutions of period 1 , i.e.,

u(0) = u(1) .

Note that the period T is one of the unknowns.

190FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

The above equations do not uniquely specify u and T :

Assume that we have computed

( uk−1(·) , Tk−1 , λk−1 ) ,

and we want to compute the next solution

( uk(·) , Tk , λk ) .

Specifically, uk(t) can be translated freely in time:

If uk(t) is a periodic solution, then so is

uk(t+ σ) ,

for any σ .

Thus, a “phase condition” is needed.

191FisMat 2015 Computational Methods in Dynamical Systems



Hopf theorem

An example is the Poincaré orthogonality condition

(uk(0) − uk−1(0))∗ u
′
k−1(0) = 0 .

(Below we derive a numerically more suitable phase condition.)

u k-1 (0)

��

��

u
k-1 (0)

u (0)
k

Figure 48: Graphical interpretation of the Poincaré phase condition.
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Hopf theorem

Integral Phase Condition

If ũk(t) is a solution then so is

ũk(t+ σ) ,

for any σ .

We want the solution that minimizes

D(σ) ≡
∫ 1

0
‖ ũk(t+ σ) − uk−1(t) ‖2

2 dt .

The optimal solution
ũk(t+ σ̂) ,

must satisfy the necessary condition

D′(σ̂) = 0 .
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Hopf theorem

Differentiation gives the necessary condition

∫ 1

0
( ũk(t+ σ̂) − uk−1(t) )∗ ũ′k(t+ σ̂) dt = 0 .

Writing
uk(t) ≡ ũk(t+ σ̂) ,

gives ∫ 1

0
( uk(t) − uk−1(t) )∗ u′k(t) dt = 0 .

Integration by parts, using periodicity, gives

∫ 1
0 uk(t)

∗ u
′
k−1(t) dt = 0 .

This is the integral phase condition.
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Hopf theorem

Pseudo-Arclength Continuation

We use pseudo-arclength continuation to follow a family of periodic solutions.

This allows calculation past folds along a family of periodic solutions.

It also allows calculation of a “vertical family” of periodic solutions.

For periodic solutions the pseudo-arclength equation is

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .
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Hopf theorem

In summary, we have the following equations for continuing periodic solutions:

u′k(t) = T f( uk(t) , λk ) ,

uk(0) = uk(1) ,

∫ 1

0
uk(t)

∗ u
′
k−1(t) dt = 0 ,

with pseudo-arclength continuation equation

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .

Here

u(·) , f(·) ∈ Rn , λ , T ∈ R .
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Hopf theorem

Starting at a Hopf Bifurcation

Let
(u0 , λ0) ,

be a Hopf bifurcation point, i.e.,

fu( u0 , λ0 ) ,

has a simple conjugate pair of purely imaginary eigenvalues

± i ω0 , ω0 6= 0 ,

and no other eigenvalues on the imaginary axis.

Also, the pair crosses the imaginary axis transversally with respect to λ .

By the Hopf Bifurcation Theorem, a family of periodic solutions bifurcates.
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Hopf theorem

Asymptotic estimates for periodic solutions near the Hopf bifurcation :

u( t ; ε ) = u0 + ε φ(t) + O(ε2) ,

T (ε) = T0 + O(ε2) ,

λ(ε) = λ0 + O(ε2) .

Here ε locally parametrizes the family of periodic solutions.

T (ε) denotes the period, and

T0 =
2π

ω0

.

The function φ(t) is the normalized nonzero periodic solution of the linearized,
constant coefficient problem

φ′(t) = fu(u0, λ0) φ(t) .
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Hopf theorem

To compute a first periodic solution

( u1(·) , T1 , λ1 ) ,

near a Hopf bifurcation (u0, λ0) , we still have

u′1(t) = T f( u1(t) , λ1 ) , (10)

u1(0) = u1(1) . (11)

Initial estimates for Newton’s method are

u
(0)
1 (t) = u0 + ∆s φ(t) , T

(0)
1 = T0 , λ

(0)
1 = λ0 .
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Hopf theorem

Above, φ(t) is a nonzero solution of the time-scaled, linearized equations

φ′(t) = T0 fu(u0, λ0) φ(t) , φ(0) = φ(1) ,

namely,

φ(t) = sin(2πt) ws + cos(2πt) wc ,

where
( ws , wc ) ,

is a null vector in

( −ω0 I fu(u0, λ0)
fu(u0, λ0) ω0 I

) (
ws

wc

)
=

(
0
0

)
, ω0 =

2π

T0

.

The nullspace is generically two-dimensional since
(−wc

ws

)
,

is also a null vector.
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Hopf theorem

For the phase equation we “align” u1 with φ(t) , i.e.,

∫ 1
0 u1(t)∗ φ′(t) dt = 0 .

Since

λ̇0 = Ṫ0 = 0 ,

the pseudo-arclength equation for the first step reduces to

∫ 1
0 ( u1(t)− u0(t) )∗ φ(t) dt = ∆s .
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Numerical details

AUTO solves BVP with orthogonal collocation with
adaptative mesh selection.
Floquet multipliers are computed for free.
The code is partially parallelized (openmp and mpi).
AUTO can solve in a efficient way system of moderate to
large dimensions.
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A difficult example: Bogdanov-Takens bifurcation

Analyze

du1

dt
= u2

du2

dt
= −n + bu2 + u2

1 + u1u2

Some results on homoclinic and heteroclinic connections in
planar systems, A. Gasull, H. Giacomini and J. Torregrosa
(Nonlinearity)
See also Kuznetsov’s book.
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Unusual applications of continuation.

Zeros, continuation and bifurcations.

Any problem that may be formulated as G(u, λ) = 0 is suitable
for continuation.

What about computing eigenvalues?
and initial value problems?
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Computing eigenvalues with AUTO

What are the eigenvaues of

A =




8 1 6
3 5 7
4 9 2


?

with Matlab,

eig(A)= [15.0000 4.89990 -4.89990 ]

with AUTO

(A− λI)v = 0
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Manifold computation by continuation

Example: The Lorenz Equations

(AUTO demos lor, lrz, man.)

x′ = σ (y − x) ,

y′ = ρ x − y − x z ,

z′ = x y − β z ,

where
σ = 10 and β = 8/3 .
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Figure 68: Bifurcation diagram of the Lorenz equations.

268

FisMat 2015 Computational Methods in Dynamical Systems



NOTE:

◦ The zero solution is unstable for ρ > 1 .

◦ Two nonzero stationary solutions bifurcate at ρ = 1 .

◦ The nonzero stationary solutions become unstable for ρ > ρH .

◦ At ρH ( ρH ≈ 24.7 ) there are Hopf bifurcations.

◦ Unstable periodic solutions emanate from each Hopf bifurcation.

◦ These families end in homoclinic orbits (infinite period) at ρ ≈ 13.9 .

◦ For ρ > ρH there is the famous Lorenz attractor.
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Figure 69: Unstable periodic orbits of the Lorenz equations.
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The Lorenz Manifold

◦ For ρ > 1 the origin is a saddle point .

◦ The Jacobian has two negative eigenvalues and one positive eigenvalue.

◦ The two negative eigenvalues give rise to a 2D stable manifold .

◦ This manifold is known as as the Lorenz Manifold .

◦ The Lorenz Manifold helps us understand the Lorenz attractor .

Discrete and Continuous Dynamical Systems, 2010; (to appear).
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The Lorenz Equations: rho = 60

Figure 70: Three orbits whose initial conditions agree to >11 decimal places !
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Figure 71: A small portion of a Lorenz Manifold · · ·
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Figure 72: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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Figure 73: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).

275

FisMat 2015 Computational Methods in Dynamical Systems



Figure 74: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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NOTE:

◦ As shown, crossings of the Lorenz manifold with a sphere can be located.

◦ Crossings of the Lorenz manifold with the plane z = ρ− 1 can be located.

◦ Connections between the origin and the nonzero equilibria can be located.

◦ There are subtle variations on the algorithm !
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Lorenz Section: rho= 60

Figure 75: Crossings of the Lorenz Manifold with the plane z = ρ− 1
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