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Introduction: QM

Review QM

WAVE FUNCTIONS (STATES): ¢n(x) (or ket |n))
OPERATORS: Hamiltonian, transition operators.

~ R? d?
H = —% w + V(X)
(Independent of time) Schroedinger eq.:
n?  d?
5 5 V9] ) = Eronl)

plus the corresponding boundary conditions PROVIDE ¢, (x):
o finite
@ single valued
@ continuous

Normalization:

[ dentdentx) = dnm
all space
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Algebraic approach to QM

If the potential is independent on time, the Schroedinger equation to be
solved is the eigenvalue equation

I:ISOn(X) = E,,(,O,,(X)

H is the system Hamiltonian which contains the kinetic energy and the
potential energy

A n?  d?
H=—— —+4V(x).
2m dx? +V(x)
For a general potential, one has to solve the corresponding differential

equation.
An alternative to this method is the algebraic approach. This is based on

the following simple idea. Suposse an operator A defined in a given
vectorial space of dimension 2 and we have to solve the eigenvalue problem

~

A ﬁn:)\n l_j,,,
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Algebraic approach...continue

One can consider a basis {&,&]} of the vector space. The action of A on

the basis vectors will be:

—

1 = aé +bé,

Aé& = cé +dé.

Y

The eigenstates i will be linear combinations of the basis vectors
U= uj & + up &.

Thus, finding the A eigenvectors, 1, is equivalent to getting the
coefficients u; y up in the given basis.
All the above can be written in matrix form

(2a)(n)=2(n)
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Algebraic approach...continue

Consequently, solving the eigenvalue problem Al = \ii is equivalent to
diagonalize the matrix

a b o 51 . Aél 52 . /A4§1 _ /IALl /,A172
c d) \& A& & -As ) \ A1 A
Lets go now to our problem of solving the time independent Schroedinger
equation: A= H.
Hok = Expy -

Following what we have discussed above, what we need is a basis of the
Hilbert space of the problem: {¢,}, with n=1,2,... . The H eigenstates,
¢k, can be written as a linear combination of basis states {¢,}:

Pk = Z Cl(1k)¢n-
n=1

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso | Sevilla, July 2015 7 /40



Algebraic approach...continue

Putting this last expanssion into the Schrodinger equation:

H i c,(,k)(bn = Ey i Cr(wk)éf?ny
n=1 n=1

bring us to the conclusion that getting the eigenstates {(x} is equivalent

to determining the expanssion coefficients in the selected basis, {c,(,k)}.
Left multiplication of the last equation by an arbitrary element of the basis
¢%, and integration to the whole space give (Dirac notation: ¢, — [n))

o0
Zc,(,k)(m|H| Ech,, {(m|n) Ekcm ,
n=1

/ dV Gubn —s (min),

*
[ dv o, — (miHn)
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Algebraic approach to Quantum Mechanics

The preceding equation can be written in matrix notation as
(Hnm = (n[H|m))

K K

Hi1 Hip Hiz ... C:E : ‘3} :

Ho1 Hao Ho3z ... cék) cék)
= E

H371 H372 H373 . C(k) k (k)

CONCLUSION: Solving the time independent Schrodinger equation is
equivalent to diagonalize the Hamiltonian matrix in a basis of the Hilbert
space of the problem

Hi1 Hip His
Ho1 Ho Hoj3

Hs1 Hzo> Hz3

One can choose any appropriate basis !!!.
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Weakly bound systems

For any realistic composite quantum mechanical system (atoms,
molecules, nuclei, . ..) the treatment of the continuous part of the
spectrum is a difficult task.

Weakly-bound systems: both bound and unbound states have to be
treated on equal footing

@ The continuum wave functions depend on a continuously varying
parameter (the energy or the wave number) and are not normalizable,
which make them awkward for actual applications.

@ Explicit inclusion of the continuum states in structure or reaction
calculations requires a discretization of the continuum = the
continuum is substituted by a discrete set of normalizable states
which becomes a complete set as the number of states considered
tends to infinity.
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Scheme
‘Quantum System‘
e N\
Non-bound states Bound states
) )
Continuum spectrum Discrete spectrum
No normalizable Normalizable
strongly
v v O bound
system

weakly bound system
Discretization method OO OP
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Motivation

Net7 2] Ne2aNe2 i eoefhece
F20 |F21 | re2 | Fea | Fas | s
o3 o14|o15 s E N HIET] 010 ceo| 1| cez|oza|ce s
iz | ma BT w6 | w7 (s | o [ reo | wer | nez | ez
et PN EH EAEHERERES 2
.
so| e [EACA EAER BT B12
L3 » L |
Emu Betl [Be1 4 Bel 4
. .
L | g L, « deuteron
= » 1nhalo
+ * 2nhalo
t ¢ 4dnhalo
= 1p halo
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The Schroedinger equation

If the potential is independent on time, the Schroedinger equation to be
solved is the eigenvalue equation

’:ISOn(X) = Enpn(x)

H is the system Hamiltonian which contains the kinetic energy and the

potential energy
A h?  d?
H=—— —+4V(x).
om a2 TV
For a general potential, one has to solve the corresponding differential
equation. General potentials V/(x) have both types of solutions: i) discrete

and normalizable, and ii) continuous and non-normalizable.

@ When treating deeply bound states the approximation of considering
just the discrete states is reasonably good

@ However, for loosely bound states the continuous part has to be
necesarily included.
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The continuum in Quantum Systems Quantum Mechanics

The solution of the Schroedinger equation (including the appropriate
boundary conditions)

I:IQOn(X) = En‘Pn(X)

provide the eigenvalues, energies, and eigenfunctions, {,(x)}. these are
orthogonal in the sense

[ ei0emt) = dnm
all space

{¢n(x)} is a basis for the Hilbert space of the problem (include all
eigenstates, discrete and continuous).

Sometimes the solution of the differential equation is difficult =
ALTERNATIVE!
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Classical orthogonal polynomials

Classical orthogonal polynomials

A system of polyomials P,(x) (degree n) is called orthogonal in an interval
a < x < b, with respect to a weight function w(x), if

b
/ I ()P ()Pm(x) =0  nEm  mm=0,12,-
a

w(x) determines the polynomials up to a constant factor for each
polynomial in the family. The specification of these coefficients is known

as standarization.

Examples:
name w(x) (a, b)
Hermite H,(x) e (—00, +00)
Laguerre L,(x) e (0, +00)
Laguerre generalized L' (x) | x@e~* (0, +00)
Gegenbauer C,(,O‘)(x) (1 —x2)21/2 | (-1,1)

I
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Classical orthogonal polynomials
Figures

Generalized Laguerre, a = 1, n=2-5 Gegenbauer, a = 0,5, n=2-5
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Connection QM - OP in 1D systems

1D case: orthogonal polynomials

A one-dimensional hamiltonian:
R d?
= “amae TV

The ground state wave function ¢g(x) is known, either analytically or
numerically,

Hipo(x) = eopo(x)

Define a weight function w(s) as

wfs) = X lgol)P

s(x) is an arbitrary function continuous, single-valued, and monotonously
increasing or decreasing, taking values in an interval [a, b]
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1D case: orthogonal polynomials Il

Defined interval and weight function, construct a family of orthogonal
polynomials {P,(s); n=10,1,2,...} that fulfill

b
/ ds w(s)Pn(s)Pm(s):ﬁémm .

From these polynomials and the ground state wave function, it is
straightforward to construct a set of orthonormal wave functions

Om(x) = (x|OP, n) = Nimgo(x)Pm(s(x))
that fulfill
+o0o
| 0x)600) = G0
— 0o
The functions ¢n(x), excepting ¢o(x) which is actually the ground state
wave function, are not eigenfunctions of the hamiltonian, but constitute a

basis in which the hamiltonian can be diagonalized.
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Connection QM - OP in 1D systems Trivial OP: TOP

Examples: Trivial orthogonal polynomials

© Trivial weight: s = x. The ground state wave function in terms of s is
just @o(x). The weight function is

w(x) = lpo(x)[*.

Orthogonal polynomials, P,(x), in the interval (—oo, +00) with
respect to this weight function can be found by a Gram-Schmidt
procedure. From these and the ground state wave function, the basis
wave functions are obtained as

gb,;I'OP(X) = NnSOO(X)Pn(X)'

Pp(x) can be written

Pn(x) = Z C,,7kxk.
k=0
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NaturallORANOR
NOP: Morse

© The Morse potential is
1/ 2
) =0 ((1-ew (2P -1) D=3 (5+3) .

s =(2j + 1) exp[—x]

weight: w(s) = w75 " exp[—s]
interval: [0, c0).

000

Laguerre polynomials L£,2j71)(s),

/
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NaturallORANOR
NOP: Poeschl-Teller

© The Poschl-Teller potential

1 1
vix) =— D ——: D==j(j+1
s = tanh|[x] _
weight: w(s) = 510__11))': (1-s%y-1

interval: (—1,1).
Gegenbauer polynomials C,g,ﬁlm(s),

©C00e
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A proposal: THO

Continuum discretization with THO

One-dimensional weakly bound system with hamiltonian

@ x: relative coordinate of two particles.
@ m: reduced mass.

@ v(x): interaction between both particles.
We assume only one bound state:

hyg(x) = Epip(x)

Develop a procedure to describe approximately the states in the continuum
by means of a finite number of normalizable states.
Orthogonal polynomials and Physics Curso |
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THO method (1D)

© THO: the local scale transformation transforms the ground state wave
function in the ground state wave function of a harmonic oscillator

x s 1+ erf(s
[ letrPar = [ st pas = ST

Direct integration provides s(x). THO basis: w(s) = e, interval
(—00, +00) = relevant polynomials are Hermite).

én"0(x) = Nawo(x)Ha(s(x)),

@ If x-values restricted to positive values,
X S
| ot Pa = [ 1o5o(s)Pas
0 0
THO basis (relevant polynomials are generalized Laguerre in s(x)?).

THO [ y — Af! 1/2 2
o (x) = Nogo(x)La"((s(x))),
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S

The LST for HO = THO method




A proposal: THO THO applied to the Poeschl-Teller potential

Poeschl-Teller Potential

1

V(x) :_DCOST(OZX)
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A proposal: THO THO applied to the Poeschl-Teller potential

THO basis for PT potentiaII

)
exp(—s )ds— 1 dx

VT  2cosh?(x)
tanh(x) = erf(s)

% - ? exp(—s)(1 — erf*(s))

Pn(x) = (x| THO, n) = Napo(x) Ha(s(x)) = %MO(S(X))

HO 2
00 (8) = NpHa(s) exp(—s°/2)
Orthonormal Basis : (THO, m| THO, n) = 6, m
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A proposal: THO THO applied to the Poeschl-Teller potential

Poeschl-Teller Potential
15 \ T I \ \

10

-10

- \ \
15 -50 -25 0 25 50
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A proposal: THO THO applied to the Poeschl-Teller potential
'HO basis

- Poeschl-Tellet

-1 \ \ |
=10 -5 0 5 10

X
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A proposal: THO THO applied to the Poeschl-Teller potential

Hamiltonian Diagonalization'

(THO, n|H — Eg| THO, m) :/dx o0 (x)(H — Eg)HO(x)

(THO, n|(h — Eg)|THO, m) =
2h2

—nNpmN, /ds exp (—5%) Hp—1(s) Hm-1(s) (ii)
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A proposal: THO THO applied to the Poeschl-Teller potential

Hamiltonian Eigenstates'

IN,0) = |THO,n=0) — Eigenstate with eigenvalue Eg.
If dimension of THO basis is restricted to N, we get N — 1 other states
with positive energies: |N,i); i=1,..., N — 1.

IN,0) = |THO,0)
N—1

IN,i) = > |THO,j)(THO,jIN, i)
j=1

(XN, i) = Y (x) = 7P (s(x)) g " (x)

N-1
PN7Y(s) =) NiH;(s)(THO,jIN, i)
j=1
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A proposal: THO THO applied to the Poeschl-Teller potential

m
>
o N b~ O ©

-10 -5 0 5 10
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THO applied to the Poeschl-Teller potential
Checking the THO method: sum rules

Total strength

TS(O;N) = [(N,i|O|N,0)

TS(0) = TS(O; N — ) = /dx O(x)?po(x)?
Energy weighted sum rule

EW(0; N) => (EN — Eg)|(N,i|O|N,0)?

i

EW(0) = EW(0: N — 50) — / dx (dO(x)/ dx 200 (x)?
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A proposal: THO THO applied to the Poeschl-Teller potential

Cuadro: Sum rules results for O = x and the Poeschl-Teller case.

N | TS(x, N) | EW(x, N) | PO(x, N)
3 | 0,82245 1,05418 1,26254
5 | 0,822467 | 1,00068 | 1,42050
9 | — 1,00000 1,42350
TS(x) EW(x) PO(x)
0,822467 | 1,00000 | 1,42350

Cuadro: Sum rules results for O = V/(x) and the Poeschl-Teller case.

N | TS(V,N) | EW(V,N) | PO(V,N)

4 | 0527628 | 0,216765 | 0,0740682

10 | 0,533187 | 0,207387 | —

16 | 0533328 | 0,304192 | —
TS(V) | EW(V) | PO(V)
0,533333 | 0,304762 | 0,0740741
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3D case: THO two-body systems

r
o—o©o
n

0 Example: deuteron s wave »

~ ) =3
HO
- =2
——————— i=1
_____ @y (5)
0 — —
2 4
S

Jo dr'logs(r)? = [g ds'|6ge°(s")I?
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A proposal: THO The 3D case: deuteron

For central potentials the radial Schroedinger equation is:

n?  d? 00+ 1)R?
" 2m dr? (r)+ 2mr?
Now r goes from 0 to +oo.
The angular part is given by the spherical harmonics Yy (6, ¢).

e V(r) =—D —L . Poeschl-Teller Potential

cosh?(ar)

Spnf(r) = Enf(pné(r)

o jp = 125 ;a = 0,941 fm™1 sy=ar
° wo(y) = 2(p — DI (2p)P;,” " (tanh(y))

[

D = 46.2 MeV

E,=2.22 MeV
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A proposal: THO The 3D case: deuteron

Change of coordinates

1 (2jp) exp(~2(jp — 1)y) = erf(s) — 2s exp(~5%)/v/

500
400 —
300
ar ¥

200 —

100
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A proposal: THO The 3D case: deuteron

Deuteron THO basis

~~ o)
f— L -
(o] O
Nt N
9 9
=_ I=1 =_
- =2 -
o i
S 1=3 S
n=0
~— n:l
8 n=2 =
n=3 o]
Nt —
o) n=4 O\/
T T
[ o = _
3 o
=3 s

ar
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A proposal: THO The 3D case: deuteron

5
W oan

5
W (ar)

5
W o(an)

5
W s(ar)

T

Vo
=

Va

e

\~—
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A proposal: THO The 3D case: deuteron

120 { T { T { T { { T { T { T {
100 S 200 —_— 7
80— —1 150 — —
60 - i i
L 4 100— —
~— 40— T r B
20 | 50— —
0= I ! I ! i — 0 == . ! f ! |
T T T T T T T —_—T T T T T T
30— =
L 4 10+ - —
< 20 —
— 10— =
o | | =
0 =
1 L 1 L 1 L 1 1 L 1 L 1 L 1
0 1 2 3 0 1 2 3
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Summary and conclusions

Summary and Conclusions

@ We have presented a method capable of an adequate
description of the continuum states for both 1D and 3D weakly
bound systems, providing a N dimensional orthonormal
Transformed Harmonic Oscillator basis.

@ The method presented has been applied to two 1D cases
(Morse and Poeschl-Teller) and one 3D case (Deuteron as a
Poeschl-Teller).

@ The convergence of the method has been examined computing
for increasing values of N the appropriate sum checks
(TS,EWSR,PO) for different operators.

@ This method can be envisaged as an alternative to the
currently used descriptions for the continuum in coupled
channels calculations.
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