A Simple application of orthogonal polynomials to Physics

José M. Arias

Departamento de Física Atómica, Molecular y Nuclear (Universidad de Sevilla)

Sevilla, July 2015

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso I

- Curro Pérez-Bernal
- Ismael Martel
- Joaquín Gómez-Camacho
- Antonio Moro
- Manuela Rodríguez-Gallardo
- José A. Lay
- Jesús Casal

∃ ⊳

Image: A matrix of the second seco

Index

- Introduction: QM
- Ontivation
- Introduction: orthogonal polynomials and continuum discretization
- Examples
- Transformed Harmonic Oscillator basis
 - Coordinate transformation
 - Hamiltonian diagonalization
 - Onvergence checks
- **O** Application to a 3D case: the deuteron
- Summary and conclusions

イロト 人間ト イヨト イヨト

Review QM

WAVE FUNCTIONS (STATES): $\varphi_n(x)$ (or ket $|n\rangle$) OPERATORS: Hamiltonian, transition operators.

$$\widehat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x).$$

(Independent of time) Schroedinger eq.:

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)\right]\varphi_n(x) = E_n\varphi_n(x)$$

plus the corresponding boundary conditions PROVIDE $\varphi_n(x)$:

- finite
- single valued
- continuous

Normalization:

$$dx \varphi_n^*(x)\varphi_m(x) = \delta_{n,m}$$

J all space

Algebraic approach to QM

If the potential is independent on time, the Schroedinger equation to be solved is the eigenvalue equation

$$\hat{H}\varphi_n(x)=E_n\varphi_n(x)$$

 \hat{H} is the system Hamiltonian which contains the kinetic energy and the potential energy

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x).$$

For a general potential, one has to solve the corresponding differential equation.

An alternative to this method is the algebraic approach. This is based on the following simple idea. Suposse an operator \hat{A} defined in a given vectorial space of dimension 2 and we have to solve the eigenvalue problem

$$\hat{A} \ \vec{u}_n = \lambda_n \ \vec{u}_n,$$

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Algebraic approach...continue

One can consider a basis $\{\vec{e}_1, \vec{e}_2\}$ of the vector space. The action of \hat{A} on the basis vectors will be:

$$\hat{A} \ \vec{e}_1 = a \ \vec{e}_1 + b \ \vec{e}_2,$$

 $\hat{A} \ \vec{e}_2 = c \ \vec{e}_1 + d \ \vec{e}_2.$

The eigenstates \vec{u} will be linear combinations of the basis vectors

$$\vec{u} = u_1 \ \vec{e}_1 + u_2 \ \vec{e}_2.$$

Thus, finding the \hat{A} eigenvectors, \vec{u} , is equivalent to getting the coefficients $u_1 \neq u_2$ in the given basis.

All the above can be written in matrix form

$$\left(\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array}\right) \left(\begin{array}{c} \mathsf{u}_1 \\ \mathsf{u}_2 \end{array}\right) = \lambda \left(\begin{array}{c} \mathsf{u}_1 \\ \mathsf{u}_2 \end{array}\right).$$

Algebraic approach...continue

Consequently, solving the eigenvalue problem $\hat{A}\vec{u} = \lambda \vec{u}$ is equivalent to diagonalize the matrix

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} \vec{e}_1 \cdot \hat{A}\vec{e}_1 & \vec{e}_2 \cdot \hat{A}\vec{e}_1 \\ \vec{e}_1 \cdot \hat{A}\vec{e}_2 & \vec{e}_2 \cdot \hat{A}\vec{e}_2 \end{array}\right) \equiv \left(\begin{array}{cc} \hat{A}_{1,1} & \hat{A}_{1,2} \\ \hat{A}_{2,1} & \hat{A}_{2,2} \end{array}\right)$$

Lets go now to our problem of solving the time independent Schroedinger equation: $\hat{A} = \hat{H}$.

$$\hat{H} arphi_k = E_k arphi_k$$
 .

Following what we have discussed above, what we need is a basis of the Hilbert space of the problem: $\{\phi_n\}$, with n = 1, 2, The \hat{H} eigenstates, φ_k , can be written as a linear combination of basis states $\{\phi_n\}$:

$$\varphi_k = \sum_{n=1}^{\infty} c_n^{(k)} \phi_n.$$

(ロト (間) (言) (言) 三日 ののの

Algebraic approach...continue

Putting this last expanssion into the Schrödinger equation:

$$H\sum_{n=1}^{\infty}c_n^{(k)}\phi_n=E_k\sum_{n=1}^{\infty}c_n^{(k)}\phi_n,$$

bring us to the conclusion that getting the eigenstates $\{\varphi_k\}$ is equivalent to determining the expansion coefficients in the selected basis, $\{c_n^{(k)}\}$. Left multiplication of the last equation by an arbitrary element of the basis ϕ_m^* and integration to the whole space give (Dirac notation: $\phi_n \longrightarrow |n\rangle$)

$$\sum_{n=1}^{\infty} c_n^{(k)} \langle m | H | n \rangle = E_k \sum_{n=1}^{\infty} c_n^{(k)} \langle m | n \rangle = E_k c_m^{(k)},$$

$$\int dV \phi_m^* \phi_n \longrightarrow \langle m | n \rangle,$$

$$\int dV \phi_m^* H \phi_n \longrightarrow \langle m | H | n \rangle$$

The preceding equation can be written in matrix notation as $(H_{nm} \equiv \langle n|H|m\rangle)$

$$\begin{pmatrix} H_{1,1} & H_{1,2} & H_{1,3} & \dots \\ H_{2,1} & H_{2,2} & H_{2,3} & \dots \\ H_{3,1} & H_{3,2} & H_{3,3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_1^{(k)} \\ c_2^{(k)} \\ c_3^{(k)} \\ \vdots \end{pmatrix} = E_k \begin{pmatrix} c_1^{(k)} \\ c_2^{(k)} \\ c_3^{(k)} \\ \vdots \end{pmatrix}$$

CONCLUSION: Solving the time independent Schrödinger equation is equivalent to diagonalize the Hamiltonian matrix in a basis of the Hilbert space of the problem

$$\begin{pmatrix} H_{1,1} & H_{1,2} & H_{1,3} & \dots \\ H_{2,1} & H_{2,2} & H_{2,3} & \dots \\ H_{3,1} & H_{3,2} & H_{3,3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

One can choose any appropriate basis !!!.

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso I Sevil

Weakly bound systems

For any realistic composite quantum mechanical system (atoms, molecules, nuclei, ...) the treatment of the continuous part of the spectrum is a difficult task.

Weakly-bound systems: both bound and unbound states have to be treated on equal footing

- The continuum wave functions depend on a continuously varying parameter (the energy or the wave number) and are not normalizable, which make them awkward for actual applications.
- Explicit inclusion of the continuum states in structure or reaction calculations requires a discretization of the continuum ⇒ the continuum is substituted by a discrete set of normalizable states which becomes a complete set as the number of states considered tends to infinity.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Motivation

Scheme

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso Sevilla, July 2015

July 2015 11 / 40

-

< A → <

Motivation

Motivation

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso I Sevilla, July 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

The Schroedinger equation

If the potential is independent on time, the Schroedinger equation to be solved is the eigenvalue equation

$$\hat{H}\varphi_n(x)=E_n\varphi_n(x)$$

 \hat{H} is the system Hamiltonian which contains the kinetic energy and the potential energy

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x).$$

For a general potential, one has to solve the corresponding differential equation. General potentials V(x) have both types of solutions: i) discrete and normalizable, and ii) continuous and non-normalizable.

- When treating deeply bound states the approximation of considering just the discrete states is reasonably good
- However, for loosely bound states the continuous part has to be necessarily included.

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso I Sevilla, July 2015

The solution of the Schroedinger equation (including the appropriate boundary conditions)

$$\hat{\mathcal{H}}\varphi_n(x) = E_n\varphi_n(x)$$

provide the eigenvalues, *energies*, and eigenfunctions, $\{\varphi_n(x)\}$. these are orthogonal in the sense

$$\int_{\text{all space}} dx \varphi_n^*(x) \varphi_m(x) = \delta_{n,m}$$

 $\{\varphi_n(x)\}\$ is a basis for the Hilbert space of the problem (include all eigenstates, discrete and continuous).

Sometimes the solution of the differential equation is difficult \Rightarrow ALTERNATIVE!

Classical orthogonal polynomials

A system of polyomials $P_n(x)$ (degree n) is called orthogonal in an interval a < x < b, with respect to a weight function $\omega(x)$, if

$$\int_a^b dx \ \omega(x) P_n(x) P_m(x) = 0 \qquad n \neq m \qquad n, m = 0, 1, 2, \cdots$$

 $\omega(x)$ determines the polynomials up to a constant factor for each polynomial in the family. The specification of these coefficients is known as standarization.

Examples:

name	$\omega(x)$	(a, b)		
Hermite $H_n(x)$	e^{-x^2}	$(-\infty, +\infty)$		
Laguerre $L_n(x)$	e^{-x}	$(0,+\infty)$		
Laguerre generalized $L_n^{(\alpha)}(x)$	$x^{\alpha}e^{-x}$	$(0,+\infty)$		
Gegenbauer $C_n^{(\alpha)}(x)$	$(1-x^2)^{\alpha-1/2}$	(-1, 1)	_	
M. Arias (FAMN, Sevilla) Orthogonal polynom	als and Physics Curso	Sevilla. July 2	·· = 2015 1	≪) ⊄ (° <mark>15 / 40</mark>

1D case: orthogonal polynomials

A one-dimensional hamiltonian:

$$H = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + v(x) \quad ,$$

The ground state wave function $\varphi_0(x)$ is known, either analytically or numerically,

$$H\varphi_0(x)=e_0\varphi_0(x)$$
 .

Define a weight function $\omega(s)$ as

$$\omega(s) = rac{dx}{ds} |arphi_0(x)|^2 \;\;,$$

s(x) is an arbitrary function continuous, single-valued, and monotonously increasing or decreasing, taking values in an interval [a, b]

1D case: orthogonal polynomials II

Defined interval and weight function, construct a family of orthogonal polynomials $\{P_n(s); n = 0, 1, 2, ...\}$ that fulfill

$$\int_a^b ds \; \omega(s) P_n(s) P_m(s) = rac{1}{\mathcal{N}_n \mathcal{N}_m} \delta_{n,m} \;\; .$$

From these polynomials and the ground state wave function, it is straightforward to construct a set of orthonormal wave functions

$$\phi_m(x) = \langle x | OP, n \rangle = \mathcal{N}_m \varphi_0(x) P_m(s(x))$$
,

that fulfill

$$\int_{-\infty}^{+\infty} dx \ \phi_m^*(x) \phi_n(x) = \delta_{n,m} \quad .$$

The functions $\phi_n(x)$, excepting $\phi_0(x)$ which is actually the ground state wave function, are not eigenfunctions of the hamiltonian, but constitute a basis in which the hamiltonian can be diagonalized.

Trivial OP: TOP

Examples: Trivial orthogonal polynomials

Trivial weight: s = x. The ground state wave function in terms of s is just φ₀(x). The weight function is

$$\omega(x) = |\varphi_0(x)|^2.$$

Orthogonal polynomials, $P_n(x)$, in the interval $(-\infty, +\infty)$ with respect to this weight function can be found by a Gram-Schmidt procedure. From these and the ground state wave function, the basis wave functions are obtained as

$$\phi_n^{TOP}(x) = \mathcal{N}_n \varphi_0(x) P_n(x).$$

 $P_n(x)$ can be written

$$P_n(x) = \sum_{k=0}^n C_{n,k} x^k.$$

NOP: Morse

The Morse potential is

$$v(x) = D \left((1 - \exp(-x))^2 - 1 \right) ; D = \frac{1}{2} \left(j + \frac{1}{2} \right)^2,$$

•
$$s = (2j+1) \exp[-x]$$

• weight: $\omega(s) = \frac{1}{\Gamma[2j]} s^{2j-1} \exp[-s]$

 \bigcirc interval: $[0,\infty)$.

• Laguerre polynomials
$$L_n^{(2j-1)}(s)$$
,

_

1

< A + A

→ 3 →

3

Natural OP: NOP

NOP: Poeschl-Teller

The Pöschl-Teller potential

$$v(x) = -D \frac{1}{\cosh^2(x)}; D = \frac{1}{2}j(j+1)$$

- s = tanh[x]• weight: $\omega(s) = \frac{(2j-1)!!}{2^{j}(j-1)!!} (1-s^2)^{j-1}$
- **3** interval: (-1, 1).
- Gegenbauer polynomials $C_n^{(j-1/2)}(s)$,

Continuum discretization with THO

One-dimensional weakly bound system with hamiltonian

$$h=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+v(x)$$

- x: relative coordinate of two particles.
- *m*: reduced mass.
- v(x): interaction between both particles.

We assume only one bound state:

$$h\psi_B(x) = E_B\psi_B(x)$$

Objective

Develop a procedure to describe approximately the states in the continuum by means of a *finite number of normalizable states*, $a = -9 \circ 0$

Sevilla, July 2015

A proposal: THO

THO method (1D)

• THO: the local scale transformation transforms the ground state wave function in the ground state wave function of a harmonic oscillator

$$\int_{-\infty}^{x} |\varphi_0(x')|^2 dx' = \int_{-\infty}^{s} |\phi_0^{HO}(s')|^2 ds' = \frac{1 + \operatorname{erf}(s)}{2}$$

Direct integration provides s(x). THO basis: $\omega(s) = e^{-s^2}$, interval $(-\infty, +\infty) \Rightarrow$ relevant polynomials are Hermite).

$$\phi_n^{THO}(x) = \mathcal{N}_n \varphi_0(x) \mathcal{H}_n(s(x)),$$

If x-values restricted to positive values,

$$\int_0^x |\varphi_0(x')|^2 dx' = \int_0^s |\phi_0^{HO}(s')|^2 ds'.$$

THO basis (relevant polynomials are generalized Laguerre in $s(x)^2$).

$$\phi_n^{THO'}(x) = \mathcal{N}'_n \varphi_0(x) \mathcal{L}_n^{1/2}((s(x))^2),$$

A proposal: THO

The LST for HO \Rightarrow THO method

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics Curso Sevilla, July 2015 25 / 40

ヘロト 人間ト 人造ト 人造ト

3

THO basis for PT potential

$$\frac{\exp(-s^2)}{\sqrt{\pi}}ds = \frac{1}{2\cosh^2(x)}dx$$
$$tanh(x) = erf(s)$$
$$\frac{ds}{dx} = \frac{\sqrt{\pi}}{2}\exp(-s^2)(1 - erf^2(s))$$

$$\varphi_n^{THO}(x) = \langle x | THO, n \rangle = \mathcal{N}_n \varphi_0(x) \mathcal{H}_n(s(x)) = \sqrt{\frac{ds}{dx}} \phi_n^{HO}(s(x))$$

$$\phi_n^{HO}(s) = \mathcal{N}_n H_n(s) \exp(-s^2/2)$$

Orthonormal Basis : $\langle THO, m | THO, n \rangle = \delta_{n,m}$

José M. Arias (FAMN, Sevilla)

Orthogonal polynomials and Physics Curso I

A (1) > 4

-

3

Orthogonal polynomials and Physics Curso I

э

Hamiltonian Diagonalization

$$\langle THO, n | H - E_B | THO, m \rangle = \int dx \ \varphi_n^{THO}(x) (H - E_B) \varphi_m^{THO}(x)$$

$$\langle THO, n|(h - E_B)|THO, m \rangle = \frac{2\hbar^2}{m} n \mathcal{N}_n m \mathcal{N}_m \int ds \exp(-s^2) H_{n-1}(s) H_{m-1}(s) \left(\frac{ds}{dx}\right)^2$$

イロト イポト イヨト イヨト

3

Hamiltonian Eigenstates

 $|N,0\rangle = |THO, n = 0\rangle \rightarrow$ Eigenstate with eigenvalue E_B . If dimension of THO basis is restricted to N, we get N-1 other states with **positive** energies: $|N, i\rangle$; i = 1, ..., N-1.

$$|N,0\rangle = |THO,0\rangle$$

$$|N,i\rangle = \sum_{j=1}^{N-1} |THO,j\rangle\langle THO,j|N,i\rangle$$

$$egin{aligned} &\langle x|N,i
angle =\psi_i^N(x)=\pi^{1/4}P_i^{N-1}(s(x))arphi_0^{THO}(x)\ &P_i^{N-1}(s)=\sum_{j=1}^{N-1}\mathcal{N}_jH_j(s)\langle THO,j|N,i
angle \end{aligned}$$

(日)

크

Checking the THO method: sum rules

Total strength

$$TS(O; N) = \sum_{i} |\langle N, i | O | N, 0 \rangle|^{2}$$
$$TS(O) = TS(O; N \to \infty) = \int dx O(x)^{2} \varphi_{0}(x)^{2}$$

Energy weighted sum rule

$$EW(O; N) = \sum_{i} (E_i^N - E_B) |\langle N, i | O | N, 0 \rangle|^2$$
$$EW(O) = EW(O; N \to \infty) = \int dx (dO(x)/dx)^2 \varphi_0(x)^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Cuadro: Sum rules results for O = x and the Poeschl-Teller case.

Ν	TS(x, N)	EW(x, N)	PO(x, N)
3	0,82245	1,05418	1,26254
5	0,822467	1,00068	1,42050
9	—	1,00000	1,42350
	TS(x)	EW(x)	PO(x)
	0,822467	1,00000	1,42350

Cuadro: Sum rules results for O = V(x) and the Poeschl-Teller case.

Ν	TS(V, N)	EW(V, N)	PO(V, N)
4	0,527628	0,216765	0,0740682
10	0,533187	0,297387	_
16	0,533328	0,304192	_
	TS(V)	EW(V)	PO(V)
	0,533333	0,304762	0,0740741

3D case: THO two-body systems

José M. Arias (FAMN, Sevilla) Orthogonal polynomials and Physics

< 177 ▶

Curso I

For central potentials the radial Schroedinger equation is:

$$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+V(r)+\frac{\ell(\ell+1)\hbar^2}{2mr^2}\right]\varphi_{n\ell}(r)=E_{n\ell}\varphi_{n\ell}(r)$$

Now r goes from 0 to $+\infty$.

The angular part is given by the spherical harmonics $Y_{\ell,m}(\theta,\phi)$.

•
$$V(r) = -D \frac{1}{\cosh^2(\alpha r)}$$
; Poeschl-Teller Potential
• $j_D = 1.25$; $\alpha = 0.941 \text{ fm}^{-1}$; $y = \alpha r$
• $\varphi_0(y) = \sqrt{2(j_D - 1)\Gamma(2j_D)}P_{j_D}^{-j_D + 1}(tanh(y))$

Change of coordinates

$$1 - \Gamma(2j_D) \exp(-2(j_D - 1)y) = erf(s) - 2s \exp(-s^2)/\sqrt{\pi}$$

3

36 / 40

∃ ⊳

< 4 P + <

Orthogonal polynomials and Physics Curso I

Orthogonal polynomials and Physics Curso I

Sevilla, July 2015

José M. Arias (FAMN, Sevilla)

Orthogonal polynomials and Physics Curso I

Sevilla, July 2015 39 / 40

Summary and Conclusions

- We have presented a method capable of an adequate description of the continuum states for both 1D and 3D weakly bound systems, providing a *N* dimensional orthonormal Transformed Harmonic Oscillator basis.
- The method presented has been applied to two 1D cases (Morse and Poeschl-Teller) and one 3D case (Deuteron as a Poeschl-Teller).
- The convergence of the method has been examined computing for increasing values of *N* the appropriate sum checks (TS,EWSR,PO) for different operators.

ヘロト 不得 とうき とうとう ほう

40 / 40

• This method can be envisaged as an alternative to the currently used descriptions for the continuum in coupled channels calculations.