
Quantum phase transitions in simple two-level systems
and Catastrophe Theory

José-Enrique García-Ramos

Departamento de Física Aplicada, Universidad de Huelva, Huelva, Spain
enrique.ramos@dfaie.uhu.es



Index

Parte I: Phase transitions
I The Lipkin Model
I Mean field: an approach to the quantum problem
I Phase transitions: a) Classic transitions, Landau theory. b) Quantum Phase

Transitions
I Phase diagram of the Lipkin model

Parte II: Catastrophe Theory
I Motivation: the Zeeman catastrophe machine
I Definitions
I Relevant theorems
I “The mathematical way.”
I “The physical way.”
I Application to the Lipkin model
I Misunderstandings of CT

J. E. García-Ramos (Univ. of Huelva, Spain) QPT/Lipkin model/CT 2 / 33



Macroscopic/Classical Phase Transitions

Definition of phase and phase transition
Phase: state of matter that is uniform throughout, not only in chemical
composition but also in physical properties.

Phase Transition: abrupt change in one or more properties of the system.

The phase of the system
Most stable phase of matter is the one with the lowest thermodynamical
potential Φ. This is a function of some parameters that are allowed to
change (F(T,V), F(T,B); G(T,p), G(T,M)).

Φ is analogous to the potential energy, V(x), of a particle in a one
dimensional well. The system looks for the minimum energy going into
the bottom of the potential.
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Macroscopic/Classical Phase Transitions

Control parameter: variable that affects the system, it can be changed
smoothly and “arbitrarily”.

Order parameter: observable that changes as a function of the control
parameter and that defines the “phase” of the system.

Ordered and disordered phases correspond to a value of the order
parameter equal and different from zero, respectively.

Order of a phase transition: order of the first derivative of the Gibbs
potential with respect to the control parameter that first experiences a
discontinuity: first, continuous (second order).
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Examples of Macroscopic Phase Transitions
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What is happening at the phase transition point?

T <Tc

T >Tc
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First order phase transition
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Second order phase transition

Φ in the Landau theory

Φ = A(T , ...)β4 + B(T , ...)β2 + C(T , ...)β
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The variation of the order parameter

0 0.5
Control parameter

0

0.5

1

1.5

O
rd

e
r 

p
a
ra

m
e
te

r

0

50

100

150

200

250

G
S

 e
n
e
rg

y
 (

a
rb

it
ra

ry
 u

n
it
s
)

1st order
Symmetric/Non-symmetric

0 0.5
Control parameter

2nd order 
Symmetric/Non-symmetric

J. E. García-Ramos (Univ. of Huelva, Spain) QPT/Lipkin model/CT 7 / 33



Quantum Phase Transitions

QPT occurs at some critical value, xc , of the control parameter x that controls
an interaction strength in the system’s Hamiltonian H(x). It is implicit a zero
temperature.

Ĥ = x Ĥ1 + (1− x) Ĥ2

At the critical point:
The ground state energy is nonanalytic.

The gap ∆ between the first excited state and the ground state vanishes.
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Quantum Phase Transitions
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QPT: experimental example for an Ising chain

R. Coldea et al., Science 327, 177-180 (2010).
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QPT: Lipkin model

Figure: Energy spectrum (per boson) for a Lipkin model with N = 50, α = x and
y = 0.
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QPT: Lipkin model

Figure: Energy spectrum (per boson) for a Lipkin model with N = 50, α = x and
y = 1/

√
2.
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Phase diagram of the Lipkin model

Figure: Phase diagram and energy curves for selected values of the control
parameters.
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QPT: Lipkin model

Figure: Comparison of exact (N = 1000) and mean-field results for y = 0 as a
function of x .
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QPT: Lipkin model

Figure: Comparison of exact (N = 1000) and mean-field results for y = 1 as a
function of x .
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The Zeeman Catastrophe machine

Figure: Schematic view of the Zeeman Catastrophe machine.
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Zeeman machine: energy curves

Figure: Parameter space and energy curves.
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Cusp diagram

Figure: Equilibria points
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What is for Catastrophe Theory?

Some notes
First reference: René Thom, Stabilité Structurelle et Morphogénèse
(1972).

Catastrophe theory (CT) is framed in the theory of singularities for
differentiable mappings and in the theory of bifurcations, therefore it
deals with singularities of smooth real-valued functions and tries to
classify such singularities.

CT attempts to study how the qualitative nature of the solutions of
equations depends on the parameters that appear in the equations
(Gilmore 1981).

CT explains how the state of a system can change suddenly under a
smooth change in the control variables.
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Definitions and background

Structural stability.

Codimension: number of essential parameters.

Corank: essential and non-essential variables.

k-jet/k-determinacy

Catastrophe germ.

Universal unfolding.
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Relevant theorems

Implicit function theorem for regular points.

V (x)→ x

Morse lemma for isolated critical points.

V (x)→ x2

Thom theorem for degenerated critical points.

V (x)→ g(x) + unfolding

Splitting lemma for potential with several variables.

V (x)→ g(x) + unfolding + y2 − z2
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CT program

Let us assume a system described by a real family of potentials:

V (x, λ) ∈ <

where x ∈ <n are the state (order) variables and λ ∈ <r are the control
parameters.
In this family one can find three types of points:

I Regular points: ∇V 6= 0.
I Morse points (isolated critical points):
∇V = 0 and |Hij | 6= 0.

I Non-Morse points (degenerated critical points):
∇V = 0 and |Hij | = 0.
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The mathematical way (Margalef-Roig, et al)

Definition of h(x, λ) = V (x + x0, λ+ λ0)− V (x0, λ0), where (x0, λ0)
correspond to a degenerated critical point.

Definition of the germ: g(x) = h(x,0).

Calculation of the determinacy and the codimension of g(x) through the
k-jet of g(x) (truncated Taylor expansion with k term).

Study the k-transversality of g(x) in order to establish the isomorphism
between h(x, λ) and a canonical unfolding of g(x).

Note that it is only possible to prove the existence of an isomorphism but
this DOES NOT provides the necessary change of coordinates.
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The physical way

Substitution of V (x, λ) by a truncated Taylor expansion V (x, λ)pol ,
being the germ the higher order term (the order of the Taylor expansion
is the determinacy...).

Establish the mapping between V (x, λ)pol and a canonical form through
a nonlinear change of variables (it should be calculated the
transversality...).

Work out V (x, λ)pol for getting the bifurcation and the Maxwell set.
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The seventh elementary catastrophe

Catastrophe germs and unfolding

Fold, A2: x3 + a1x
Cusp, A±3: ±x4 + a1x + a2x2

Swallowtail, A4: x5 + a1x + a2x2 + a3x3

Butterly, A±5: x6 + a1x + a2x2 + a3x3 + a4x4

Elliptical umbilic, D−4: x2y − y3 + a1x + a2y + a3y2

Hyperbolic umbilic, D+4: x2y + y3 + a1x + a2y + a3y2

Parabolic umbilic, D+5: x2y + y4 + a1x + a2y + a3x2 + a4y2
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Application to the Lipkin Model

Lipkin energy surface:

E(x , y , β)

N
= x

β2

1 + β2 −
1− x

4

(
1

(1 + β2)2 (2β + y β2)2
)

Taylor expansion:

E(x , y , β)

N
= (5x − 4)β2 + 4(x − 1)yβ3

+
(

8− 9x + y2(x − 1)
)
β4 + Θ(β5)

Why do we stop at β4?
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Application to the Lipkin Model

Simple conclusion, but not trivial
y = 0 implies second order phase transition.

y 6= 0 implies first order phase transition.

This is this while β4 coefficient remains positive.
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Phase diagram of the Lipkin model

Figure: Phase diagram.
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Two variables

Energy surface:

E(βπ, βν , χπ, χν , x) =
x
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Two variables

Hessian matrix in βπ = βν = 0:

H =

(
3x − 2 2x − 2
2x − 2 3x − 2

)
Eigenvalues and eigenvectors:

λ1 = 5x − 4, β1 = 1
2(βπ + βν)

λ2 = x , β2 = 1
2(−βπ + βν)

β1 is the essential and β2 is the unessential variable.
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Two variables

Reduction of the energy to a polynomial:

Epol = xβ2
2 + (5 x − 4) β1

2

+ 4

√
2
7

(1− x)χβ1
3 +

(
9 x − 8− 2 (1− x)χ2

7

)
β1

4,

Because of the cubic terms there exists a region where two minima
coexist→ first order phase transition.
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Misunderstandings on Catastrophe theory

In many cases, CT cannot provide quantitative results and indeed needs
the help of numerical results to start with the CT program.
About this Thom said: “...as soon as it became clear that the theory did
not permit quantitative prediction, all good minds ... decided it was of no
value...”

CT does not consist in getting the bifurcation and the Maxwell sets.

The interest of CT focus on the clasification of germs of a family of
potentials and on giving universal unfoldings, i.e. general perturbations.

A numerical calculation is always very valuable.
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