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Macroscopic/Classical Phase Transitions

Definition of phase and phase transition

@ Phase: state of matter that is uniform throughout, not only in chemical
composition but also in physical properties.

@ Phase Transition: abrupt change in one or more properties of the system.

The phase of the system

@ Most stable phase of matter is the one with the lowest thermodynamical
potential . This is a function of some parameters that are allowed to
change (F(T,V), F(T,B); G(T,p), G(T.M)).

o & is analogous to the potential energy, V(x), of a particle in a one
dimensional well. The system looks for the minimum energy going into
the bottom of the potential.
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Macroscopic/Classical Phase Transitions

e Control parameter: variable that affects the system, it can be changed
smoothly and “arbitrarily”.

@ Order parameter: observable that changes as a function of the control
parameter and that defines the “phase” of the system.

@ Ordered and disordered phases correspond to a value of the order
parameter equal and different from zero, respectively.

@ Order of a phase transition: order of the first derivative of the Gibbs
potential with respect to the control parameter that first experiences a
discontinuity: first, continuous (second order).
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Examples of Macroscopic Phase Transitions
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First order phase transition. Second order phase transition.
Liquid-gas Paramagnetic-ferromagnetic
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What is happening at the phase transition point?

(o (o]

p* m

First order phase transition Second order phase transition

® in the Landau theory

®=A(T,..)5* + B(T,...)8* + C(T,..)5
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The variation of the order parameter
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Quantum Phase Transitions

QPT occurs at some critical value, X¢, of the control parameter X that controls
an interaction strength in the system’s Hamiltonian H(x). It is implicit a zero
temperature.

I:/:XFI1—|—(1—X)I‘AI2

At the critical point:

o The ground state energy is nonanalytic.

o The gap A between the first excited state and the ground state vanishes.
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Quantum Phase Transitions

Ey®)

B (x)

A (X)

| first order

first order

continuous

ontinuous

C

ground state energy

order parameter

gap




xperimental example for an Ising chain
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QPT: Lipkin model
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Figure: Energy spectrum (per boson) for a Lipkin model with N = 50, & = x and
y=0.
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QPT: Lipkin model
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Figure: Energy spectrum (per boson) for a Lipkin model with N = 50, & = x and

y=1/v2.
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Phase diagram of the Lipkin model
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Figure: Phase diagram and energy curves for selected values of the control
parameters.
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QPT: Lipkin model
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Figure: Comparison of exact (N = 1000) and mean-field results for y = 0 as a
function of X.
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QPT: Lipkin model
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Figure: Comparison of exact (N = 1000) and mean-field results for y = 1 as a
function of X.
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The Zeeman Catastrophe machine
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Figure: Schematic view of the Zeeman Catastrophe machine.
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Zeeman machine: energy curves




Cusp diagram
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What is for Catastrophe Theory?

Some notes

o First reference: René Thom, Stabilité Structurelle et Morphogénese
(1972).

@ Catastrophe theory (CT) is framed in the theory of singularities for
differentiable mappings and in the theory of bifurcations, therefore it
deals with singularities of smooth real-valued functions and tries to
classify such singularities.

o CT attempts to study how the qualitative nature of the solutions of
equations depends on the parameters that appear in the equations
(Gilmore 1981).

@ CT explains how the state of a system can change suddenly under a
smooth change in the control variables.

J. E. Garcia-Ramos (Univ. of Huelva, Spain) QPT/Lipkin model/CT



Definitions and background

Structural stability.
Codimension: number of essential parameters.
Corank: essential and non-essential variables.
k-jet/k-determinacy

Catastrophe germ.

Universal unfolding.
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Relevant theorems

o Implicit function theorem for regular points.
V(x) — x

@ Morse lemma for isolated critical points.
V(x) — x2

@ Thom theorem for degenerated critical points.

V(x) — g(x) + unfolding

@ Splitting lemma for potential with several variables.

2

V(x) — g(x) + unfolding + y? — z
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CT program

@ Let us assume a system described by a real family of potentials:
V(x,\) e R

where X € R are the state (order) variables and A € R" are the control
parameters.
@ In this family one can find three types of points:
» Regular points: V'V #£ 0.
» Morse points (isolated critical points):
VV =0and [H;| #0.
» Non-Morse points (degenerated critical points):
VV =0and [H;| = 0.
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The mathematical way (Margalef-Roig, et al)

o Definition of h(X, \) = V(x + X% X 4+ \%) — V(x%, \?), where (x°, \%)
correspond to a degenerated critical point.

@ Definition of the germ: g(x) = h(x, 0).

@ Calculation of the determinacy and the codimension of g(x) through the
k-jet of g(x) (truncated Taylor expansion with k term).

o Study the k-transversality of g(X) in order to establish the isomorphism
between A(X, A) and a canonical unfolding of g(X).

@ Note that it is only possible to prove the existence of an isomorphism but
this DOES NOT provides the necessary change of coordinates.

v
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The physical way

@ Substitution of V/(X, \) by a truncated Taylor expansion V/(X, \)por,
being the germ the higher order term (the order of the Taylor expansion
is the determinacy...).

o Establish the mapping between V/(X, \)po/ and a canonical form through
a nonlinear change of variables (it should be calculated the
transversality...).

e Work out V/(X, A)po for getting the bifurcation and the Maxwell set.
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The seventh elementary catastrophe

Catastrophe germs and unfolding

Fold, Az: x3 + a1 x

Cusp, Arz: £x* + a1 x + apx?

Swallowtail, As: X° + @1X + axx? + agx®

Butterly, Ais: X8 4+ @i x + apx? + asx® + asx*

Elliptical umbilic, D_4: X2y — y3 + aix + a2y + agy?
Hyperbolic umbilic, D, 4: X2y + y3 + a;x + agy + asy?
Parabolic umbilic, D, 5: X%y + y* + ai1X + asy + asx® + asy?
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Application to the Lipkin Model

@ Lipkin energy surface:

E(x,y,B B? 1—x 1
: N ):X1+/32_ 7 ((1+52)2(2ﬁ+y52)2)
@ Taylor expansion:
—E(X;\{’ B) _ (5x — 4)5% + 4(x — 1)yp°

+ (8- 9x+y2x—1)) 8+ 0(6%)

e Why do we stop at 54?
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Application to the Lipkin Model

Simple conclusion, but not trivial

o y = 0 implies second order phase transition.
o y # 0 implies first order phase transition.

o This is this while $# coefficient remains positive.
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Phase diagram of the Lipkin model
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Figure: Phase diagram.

J. E. Garcia-Ramos (Univ. of Huelva. QPT/Lipkin model/CT



Two variables

o Energy surface:

x (B2 B
E(Br, Bu, Xms Xvy X) = E <1+B”2 1+ﬂ7r2)

1—x
196 (1 + 8,2)2 (1 + Br2)

5 (<1480 (14 8+%) + B (—14+ V145 xx)

+ B2 (—14[3,r + Vidx, + V14 8.2 (x0 + Xw))2>
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Two variables

@ Hessian matrix in 8, = 8, = 0:

3x -2 2x-2
H= ( 2x — 2 3x—2)

o Eigenvalues and eigenvectors:

M=5x—4, Bi=3(B+5)
Ao = X, ,32 = %(—,Bw + ,31,)

@ (31 is the essential and (5 is the unessential variable.
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Two variables

@ Reduction of the energy to a polynomial:
Epol = Xﬁg +(5x —4) 812
2 2(1—x) 2
+ 4\/;(1 —X)x B3+ (9X—8— %) B4,

@ Because of the cubic terms there exists a region where two minima
coexist — first order phase transition.
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Misunderstandings on Catastrophe theory

@ In many cases, CT cannot provide quantitative results and indeed needs
the help of numerical results to start with the CT program.

About this Thom said: “...as soon as it became clear that the theory did
not permit quantitative prediction, all good minds ... decided it was of no
value...”

@ CT does not consist in getting the bifurcation and the Maxwell sets.

o The interest of CT focus on the clasification of germs of a family of
potentials and on giving universal unfoldings, i.e. general perturbations.

@ A numerical calculation is always very valuable.
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