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ROLE
 

OF
 

CONTINUOUS
 

SYMMETRIES IN 
NUCLEAR PHYSICS
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1958 Elliott
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Early work:



CONTINUOUS SYMMETRIES: THE 
INTERACTING BOSON MODEL U(6)

Constituents. The nucleus: protons and neutrons with strong 
interaction. Properties of the strong effective interaction: 
monopole and quadrupole

 
pairing

Even-even nuclei composed 
of nucleon pairs treated as 
bosons

J=0    S-pairs

J=2    D-pairs

The interacting boson model
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Building blocks: nucleon pairs with J=0 and J=2 treated as 
bosons, s, dμ

 

(μ=0,±1,±2).

Algebraic structure (spectrum generating algebra SGA)
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Basis B: totally symmetric representations of U(6)
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Breaking of U(6) into subalgebras
 

(classification scheme) ¶
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Dynamic symmetries: situations in which the Hamiltonian H is a 
function only of Casimir

 
operators of a chain ' '' ...g g g⊃ ⊃ ⊃

( ) ' ( ') '' ( ) ...H C g C g C gα α α= + + +

All properties of the system can be obtained in explicit
 analytic

 
form

 
in terms of quantum numbers characterizing 

the representations: Simplicity in complexity
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¶

 

A.

 

Arima

 

and F. Iachello, Ann. Phys. (N.Y.) 99, 253 (1976); ibid. 111, 201 (1978); 
ibid., 123, 468 (1979).
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Energy formulas of the interacting boson model

Rotational bands with L=0,2,4,…, max{λ,μ} for K=0 and L=K, K+1,…, K+max{λ,μ} 
for K∫0, where K=integer=min{λ,μ}, min{λ,μ},…,1 or 0.

g.s. β γ ββ βγ γγ



Many examples found (1974-…)

Symmetry extends to higher energies and is 
more accurate  than originally thought! 

EVIDENCE FOR IBM SYMMETRIES IN NUCLEI

Among the best examples of symmetry in physics!

SU(3)



U(5)

SO(6)



QUANTUM PHASE TRANSITIONS (QPT)

QPTs
 

are phase transitions that occur as a function of a 
control parameter, ξ,

 
in the Hamiltonian H describing the 

system

( ) 1 21H H Hξ ξ= − +

Dynamic symmetries provide also a classification of 
quantum phase transitions, and allow the construction of 
the phase diagram.



PHASE DIAGRAM OF NUCLEI IN THE 
INTERACTING BOSON MODEL

Coexistence

 

region

Deformed phase

Spherical phase

U(5) SU(3)

SO(6)

1st

 

order

2nd

 

order



An intriguing (and surprising) result¶

 

:
The structure of a system at the critical

 
point

 
of a quantum phase 

transition is simple. The energy eigenvalues
 

are given by zeros of 
Bessel functions! Extends the notion of symmetry to the most 
difficult situation encountered in quantum physics.

E(5)

X(5)

Critical symmetry associated with scale invariance 
(Conformal invariance in quantum field theory)

CRITICAL “SYMMETRIES”
 

OF THE INTERACTING 
BOSON MODEL

¶

 

F. Iachello, Phys. Rev. Lett. 85, 3580 (2000); ibid. 87, 052502 (2001); ibid. 91, 132502 (2003).



Several examples found (2000-…)

Figure courtesy of N.V. Zamfir

EVIDENCE FOR CRITICAL SYMMETRY IN NUCLEI

R.F. Casten

 

and N.V. Zamfir, Phys. 
Rev. Lett. 87, 052503 (2001).

X(5)



GEOMETRY

U(6)

U(5)

SU(3)

SO(6)

Spherical vibrator

Axially deformed rotor

g-unstable

 

rotor

Associated with any algebra g, there is a geometry. 
A space can be constructed through the use of 
coherent or intrinsic states 
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Shapes associated with the symmetries of the IBM



SUMMARY OF SYMMETRIES
 

OF THE
 

COLLECTIVE 
MODEL

Figure courtesy of P. van Isacker



CONTINUOUS SYMMETRIES: THE 
INTERACTING BOSON MODEL-2

Building blocks:
Proton, π,

 
and neutron, ν,

 
pairs with J=0 and J=2 treated as 

bosons sπ
 

,dπ,μ

 

,sν,μ
 

,dν,μ
 

(μ=0,±1,±2)

Algebraic structure (spectrum generating algebra)

(6) (6)U Uπ ν⊗

[The algebra is actually the direct sum of two U(6) algebras,

The basis states are the direct product of representations of two U(6) 
groups].

(6) (6)u uπ ν⊕



Uπ

 

(6)

Uν

 

(6)
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SUπ+ν

 

(3)

SOπ+ν

 

(6)

In systems composed of two sub-systems new symmetries occur

Uπ

 

(6)        SUπ

 

(3)

Uν

 

(6)         SUν

 

(3)
SUπ+ν

 

(3)*

Two-fluid vibrator

Two-fluid axial rotor

Two-fluid γ-unstable rotor

Two-fluid triaxial
 

rotor
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The combination of the two bosonic
 

subsystems produces 
states with symmetry other than totally symmetric 
(mixed-symmetry

 
states)

0
2

0
2

0

2

4,2,0
2

3,1

States can be labeled either by their symmetry
 

character
 

(Young
 tableau) or by the value of the F-spin

 
(isospin

 
of

 
bosons).

⊗ ⊕
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PROTON-NEUTRON (F-SPIN) SYMMETRY

In nuclei, composed of protons and neutrons, the combination of 
the two subsystems leads to a variety of new physical phenomena:

 mixed symmetry states, scissor modes, triaxiality.

Dynamic symmetries provide benchmarks for the study 
of these phenomena



Uπν

 

(5) SUπν

 

(3) SOπν

 

(6)

φ

DYNAMIC SYMMETRIES OF IBM-2



Figure from N. Pietralla, P. von Brentano and A.F. Lisetskiy, Progress 
in Particle and Nuclear Physics, 60, 225 (2008). 
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EVIDENCE FOR IBM-2 SYMMETRIES

Mixed symmetry states in deformed nuclei were discovered in 1984
 by Richter et al., and in spherical nuclei in 1999 by Pietralla

 
et al.

Uπν

 

(5)



ROLE OF DISCRETE SYMMETRIES IN 
NUCLEAR PHYSICS

1937 Wheeler
1954 Dennison

Early work:



DISCRETE SYMMETRIES OF THE 
ALGEBRAIC CLUSTER MODEL

k

 

Nucleus

 

U(3k-2)

 

Discrete

 

Jacobi  
symmetry

 

variables

2

 

α

 

8Be

 

U(4)#

 

Z2

 

ρ

3 α

 

12C U(7)¶

 

D3

 

ρ,λ

4 α

 

16O

 

U(10)§

 

Td

 

ρ,λ,η

Discrete symmetries of the (algebraic) cluster model (ACM)¶

 

[α-
 particle model of light nuclei] in terms of representations of U(3k-

 2): bosonic
 

quantization of the Jacobi variables  

ρ

λ

# F. Iachello, Chem. Phys. Lett. 78, 581 (1981); Phys. Rev. C23, 2778 (1981).
¶

 

R. Bijker

 

and F. Iachello, Phys. Rev. C61, 067305 (2000).
R. Bijker

 

and F. Iachello, Ann. Phys. (N.Y.) 298, 334 (2002).
§

 

R. Bijker

 

and F. Iachello, Phys. Rev. Lett. 112, 152501 (2014).  



Method for constructing representations of a discrete group G

Diagonalization
 

of the symmetry adapter operators

Group G

 

Symmetry adapter

Z2

 

~S2

 

Transposition (12)

D3

 

~S3

 

Transposition (12), Cyclic permutation (123)

Td

 

~S4

 

Transposition (12), Cyclic permutation (1234)

For the cluster model with identical constituents (α-particles) it is sufficient to 
diagonalize

 

the symmetry adapter operators of the permutation group Sn

 

.
For the ACM, formulated in terms of U(3k-2) the construction is even simpler, 
since U(3k-2) contains the harmonic oscillator group U(3k-3) and the breaking 
of U(3k-3) onto Sn

 

was studied years ago by Kramer and Moshinsky¶

 

.
One can therefore find the angular momentum and parity, LP, content in a given 
representation of the discrete group G.

¶

 

P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).



Representations can be labeled either by Sn

 

or by the isomorphic 
discrete group G

Dictionary:

Group G

 

G label

 

Sn

 

label

 

Degeneragy

Z2

 

~S2

 

~P

 

A

 

[2]

 

singly degenerate

D3

 

~S3

 

A

 

[3]

 

singly degenerate
E

 

[21]

 

doubly degenerate

Td

 

~S4

 

A

 

[4]

 

singly degenerate
F

 

[31]

 

triply degenerate
E

 

[22]

 

doubly degenerate

Young tableaux



Energy formulas (“dynamic symmetries”)
 

for a rigid roto-vibrator 
composed of kα-particles:
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It is also possible to calculate all properties, B(EL), form
 

factors
 in electron scattering, etc., in explicit analytic form.
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12C

A irreps: Rotational bands with LP

 

= 0+

 

, 2+

 

, 3-

 

, 4±

 

, …

 

(K=0,3,6,…)
E irreps: 1-, 2±, 3±, …

 

(K=1,2,4,5, …)
Both positive and negative parity states sit on the same rotational band 
because of the lack of reflection symmetry of a D3

 

configuration!
Rotational bands have parity

 

doubling!

A



16O

A irreps: Rotational band with 0+, 3-

 

, 4+

 

, 6±

 

, …
E irreps: 2±, 4±, 5±, 6±, …

 

; F irreps: 1-, 2+, 3±, 4±, …
Both positive and negative parity states on the same rotational band!
Parity doubling!



12C

Observed

 
cluster 
rotational 
bands

EVIDENCE FOR D3

 

SYMMETRY

From D.J. Marin-

 
Lambarri

 

et al., 
Phys. Rev. Lett. 113, 
012502 (2014).



16O
Exp.

Observed

 

cluster rotational 
bands

EVIDENCE FOR Td

 

SYMMETRY

From R. Bijker

 

and F. Iachello, 
Phys. Rev. Lett. 112, 152501(2014).



The occurrence of clustering with discrete symmetry is 
confirmed by the B(EL) values along the ground state band 

B(EL; LPØ0+)

 

Th

 

Exp

 

E(LP) Th*

 

Exp

B(E3; 3-Ø0+)

 

181

 

205±10

 

E(3-)

 

6132

 

6130

B(E4:4+Ø0+)

 

338

 

378±133

 

E(4+)

 

10220

 

10356

B(E6:6+Ø0+)

 

8245

 

E(6+)

 

21462

 

21052

B(EL) values in e2fm2L

 

and E in keV

Parameter

 

free: consequence

 

of

 

symmetry

 

alone!

β=2.0fm extracted from the elastic form factor measured in electron scattering
* E(keV)=511 L(L+1)

16O



The occurrence of clustering is also confirmed by microscopic calculations:

(i) Molecular dynamics method (Feldmeyer

 

et al.)¶

[However, lattice calculations cannot address states with 
J>2, nor parity doubled states, which are the 
spectroscopic signatures of clustering.]

¶

 

H. Feldmeyr

 

and T. Neff, Proc. of the International School “Enrico

 

Fermi”, Course CLXIX, IOS 
Press, Amsterdam, pp. 185-215. 
§

 

E. Epelbaum

 

et al., Phys. Rev. Lett. 112, 102501 (2014). 

Very recently by:

(ii) Lattice EFT method (Epelbaum

 

et al.)§

This method interprets the structure of all light nuclei (not only n a) in terms of clusters.

It confirms D3

 

symmetry in the g.s. of 12C !

This method confirms Td

 

symmetry in the g.s. of 16O !

Boron clusters

16 Oxygen clusters



SUMMARY OF THE ROLE OF 
SYMMETRY IN NUCLEAR PHYSICS Dominated by 

symmetries of 
the collective 
model (IBM)

Dominated by symmetries 
of the cluster model 
(ACM)



Symmetries (both continuous and discrete) are pervasive in 
nuclear physics.
They are much more accurate and extend to much higher 
energies than originally thought.
Simplicity in complexity

CONCLUSIONS

Symmetries provide benchmarks for the analysis of 
experimental data and give clues for a microscopic 
understanding of the structure of physical systems. 
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A shell model description of cluster states is very difficult!

12C 0+

 

7.654 Ø

 

4p-4h
5-

 

22.4   Ø

 

5p-5h

16O 0+

 

6.049  Ø

 

4p-4h   ¶
1-

 

7.116  Ø

 

5p-5h

A challenge for large scale shell model and no-core shell model!

¶

 

G.E. Brown and A.M. Green, Nucl. Phys. 75, 401 (1966).
H. Feshbach

 

and F. Iachello, Phys. Lett. B45, 7 (1973).

MICROSCOPIC DESCRIPTION OF CLUSTERING



In addition to cluster states there are
 

non-cluster
 

states. 
Non-cluster states can be in some cases clearly identified, 
since some states are forbidden by the discrete symmetry.

For 12C, 1+

 

states cannot be formed in D3

 

.
For 16O, 0-

 

states cannot be formed in Td

 

.

These are signatures of non-cluster states.

Also, with constituent a-particles we cannot form T=1 
states, another signature of non-cluster states.

NON-CLUSTER STATES



12C

Above this 
energy cluster

 
and non-cluster

 
states coexist

(1p3/2
-11p1/2

 

)

8Be+a



16O

12C+α

Above this 
energy, cluster

 
and non-cluster

 
states coexist

Exp.

(1p1/2
-12s1/2

 

)



Also the structure of cluster states above the threshold for α-
 emission can be greatly modified from the simple rigid 

structure and can have a different geometric configuration.

12C
D3

C¶h

16O

D4

Td
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