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THE ALGEBRAIC QUARK MODEL

The constituents of hadrons are quarks and gluons. Quarks and 
gluons have internal

 
and space

 
degrees of freedom.

An algebraic description must involve both. The internal and 
space degrees of freedom may in general be mixed. However, 
it is usually assumed that they can be separated into

g = ℜ⊕ℑ

Space
 

Internal



INTERNAL QUANTUM NUMBERS OF QUARKS

Quarks are assumed to be fermions with internal degrees of freedom

Color SUc

 

(3)
 

blu, green, red
Spin SUs

 

(2)
 

∞,Æ
Flavor SUf

 

(6)
 

light:u,d,s; heavy:c,b,t

Since c,b,t
 

are much heavier than u,d,s, the flavor 
part is usually split into

4 5 6
(6) (3) (1)f f f f fSU SU U U U→ ⊗ ⊗ ⊗

Here we will consider only the three light flavors u,d,s. The 
addition of the heavy flavors is trivial since U(1) is Abelian. 
Internal degrees of freedom considered here

(2) (3) (3)s f cSU SU SU⊗ ⊗



Spin-flavor can be combined into

(6) (2) (3)sf s fSU SU SU⊃ ⊗

Gürsey-Radicati
 

Gell-Mann

Constituents:
† † † † † †, , , , ,u u d d s sa a a a a a↑ ↓ ↑ ↓ ↑ ↓

The bilinear products 
†

ij i jG a a= ( ), 1,...,6i j =

are elements of Usf

 

(6). Subtracting            , we 
have the 35 elements of SUsf

 

(6).
†
i i

i

a a∑

In particle physics, no distinction is made between algebras 
and groups. Capital letters are used for both, instead of 
lowercase, g, for algebras and capital, G, for groups.



Further splitting of SUf

 

(3)
(3) (2) (1)f I YSU SU U⊃ ⊗

Isospin
 

Hypercharge

Y=B+Σ
Hypercharge=Baryon number+Strangeness

d u s
B

 
1/3

 
1/3

 
1/3

Σ
 

0 0 -1
Y

 
1/3

 
1/3

 
-2/3

Classification of quarks and their masses

ms

 

=95≤5

mu

 

=2.3≤0.6 md

 

=4.8≤0.5

I=0

I=1/2

s

u d

Y=-2/3

Y=1/3



In particle physics, irreps
 

are labeled not by the Young 
tableau, but by the dimension of the representation. This 
notation is not good as often two different representations 
have the same dimension. In this case a bar is put over one of 
them. Here both notations will be used for clarity.
Quantum number assignments
(a) Spin-flavor, SUsf

 

(6)

Quarks [ ] 21,0,0,0,0 6 3≡ ≡ ≡

Antiquarks q

q

[ ] 21,1,1,1,1 6 3≡ ≡ ≡



Complete classification scheme for multi quark-antiquark
 states (spin-flavor):

SUsf

 

(6) SUf

 

(3)∆SUs

 

(2) SUI

 

(2)∆UY

 

(1)∆SUs

 

(2) 
∞ ∞ ∞ ∞ ∞
[λ]   [μ1

 

,μ2

 

]     S          I          Y                

 SpinI

 

(2)∆UY

 

(1)∆Spins

 

(2)
∞ ∞
I3

 

S3



(b) Color [ ]1 2,γ γ

Quarks q [ ]1,0 3c≡ ≡

Antiquarks q [ ]1,1 3c≡ ≡

Complete classification scheme for multi quark-
 antiquark

 
states (color):

Hadrons are assumed to be colorless.
The only allowed representation is the one-dimensional 
representation

1c≡



Mesons

Baryons

Tetraquarks

SPACE DEGREES OF FREEDOM
Hadrons are bound states of quarks and gluons.
In a string-like model, the lowest configurations are:

[Notation                                     ]qq



k
 
U(3k-2)

 
Discrete
symmetry

2
 
U(4)

 
C¶h

3
 
U(7)

 
D3h

4
 
U(10)

 
D2h

The space algebraic structure is obtained by a bosonic
 quantization of the Jacobi variables in terms of representations

 of (3 2)U k − ≡ ℜ

ρ

,ρ λ

, ,ρ λ η



ALGEBRAIC STRUCTURE OF HADRONS

(6) (3) (2) (3) (3)sf c s f csu su su su suℜ⊕ ⊕ ⊃ℜ⊕ ⊕ ⊕

Total algebraic structure of light hadrons

space spin      flavor color

Algebras

Groups

(6) (3) (2) (3) (3)sf c s fSU SU SU SU SUℜ⊗ ⊗ ⊃ℜ⊗ ⊗ ⊗



MESONS qq

(a) Internal degrees of freedom

Spin-flavor part SUsf

 

(6)

⊗ = ⊕

6 6 35 1⊗ = ⊕

Color part SUc

 

(3)
⊗ = ⊕

3 3 8 1c c c c⊗ = ⊕

Only allowed irrep



Spectrum of states: SPIN-FLAVOR DYNAMIC SYMMETRY

Mass formula for the mass squared operator

( ) ( )

( ) ( ) ( ) ( )

2 2
0 2 2 1

2
2 1 2 1

' (6) ( (3)) (1)

1(2) (1) (2) (2)
4

sf f Y

I Y s I

M M a C SU bC SU aC U

b C SU C U cC SU dC Spin

= + + +

⎡ ⎤+ − + +⎢ ⎥⎣ ⎦

Eigenvalues

[ ] [ ]( ) ( )

( )

2 2
1 2 0 2

2
2

, , ; , , ; , ' (6)

1' (3) ( 1) ( 1)
4

T S sf

f T

M I Y S M M M a C SU

b C SU aY b I I Y cS S dM

λ μ μ = + +

⎡ ⎤+ + + − + + +⎢ ⎥⎣ ⎦

[For mesons, a=0. Also the electromagnetic splittings
 between different charge states are small, d~0.]



OBSERVED MASS SPECTRUM OF MESONS (SPIN-FLAVOR)

1

0.5

0

M2(GeV2)
Quantum numbers



(b) Space degrees of freedom
(4)uℜ ≡

Breaking of u(4)

(4) (4) (3) (2)
(4) (3) (3) (2)

U SO SO SO
U U SO SO

⊃ ⊃ ⊃
⊃ ⊃ ⊃

Only breaking (I) is considered.

(I)
(II)

Classification of states

, , , LN v L M

v
L Rotation

Vibration



SPACE DYNAMIC SYMMETRY ¶

Eigenvalues

( )2 2
0,M v L M Av BL= + +

Linear 
Regge

 trajectories

[ ]
1/2

2 2
0 2 2

1 1' ( (4) ( 2) ( (3)
4 2

M M A C SO N N B C SO
⎡ ⎤⎡ ⎤= + − + + + −⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

4( 1) 'A N A= − +

¶

 

F. Iachello, N.C. Mukhopadyay, and L. Zhang, Phys. Rev. D44, 898 (1991).



J J

OBSERVED SPECTRUM OF MESONS (SPACE)



BARYONS 3q

(a) Internal degrees of freedom

Spin-flavor part

6 6 6 56 70 70 20S M M A⊗ ⊗ = ⊕ ⊕ ⊕

BRANCHING: Breaking of SUsf

 

(6) into SUs

 

(2)∆SUf

 

(3)
4 2

2 4 2 2

2 4

56 10 8
70 10 8 8 1
20 8 1

= ⊕

= ⊕ ⊕ ⊕

= ⊕

Color part
( )3 3 3 10 8 8 1c c c S M M A c

⊗ ⊗ = ⊕ ⊕ ⊕

Only 1c

 

allowed (hadrons are colorless)



SPIN-FLAVOR DYNAMIC SYMMETRY ¶

Mass squared operator

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
0 2 2 1

2
2 1 2 1

' (6) ' (3) (1)

1(2) (1) (2) (2)
4

sf f Y

I Y s T

M M a C SU b C SU aC U

b C SU C U cC SU dC Spin

= + + +

⎡ ⎤+ − + +⎢ ⎥⎣ ⎦

Eigenvalues

[ ] [ ]( ) ( )

( )

2 2
1 2 0 2

2
2

, , ; , , ; , ' (6)

1' (3) ( 1) ( 1)
4

S I sf

f I

M I Y S M M M a C SU

b C SU aY b I I Y cS S dM

λ μ μ = +

⎡ ⎤+ + + + − + + +⎢ ⎥⎣ ⎦

[Electromagnetic splittings
 

between different charge states 
are small, d~0.]

¶

 

M. Gell’Mann, Phys. Rev. 125, 1067 (1962); F. Gürsey

 

and L. Radicati, 
Phys. Rev. Lett. 13, 173 (1964).



OBSERVED MASS SPECTRUM OF BARYONS (SPIN-FLAVOR)

Quantum numbersName



Comparison between experiment and theory for the 
baryon decuplet, 410



(b) Space degrees of freedom (7)uℜ ≡

Breaking of u(7)

(7) (6) (6) (3) (3) (3) (2)

(7) (7) (6) (3) (3) (3) (2)

u u so so so so so

u so so so so so so
ρ λ

ρ λ

⊃ ⊃ ⊃ ⊕ ⊃ ⊃

⊃ ⊃ ⊃ ⊕ ⊃ ⊃

u-vibration           v-vibration            w-vibration

rotation



A modification of the concept of dynamic symmetry is 
needed in this case.
Analytic solutions for situations other that those in which 
H is a function of Casimir

 
operators can be obtained in 

large N limit: asymptotic dynamic symmetry.

Mass formula of the rigid oblate top with D3h

 

symmetry ¶

2 2
0 1 2 ( )u v wM M n n n Lκ κ α= + + + +

Linear Regge
 

trajectories both for vibrations and rotations

vibrations        rotations

¶

 

R. Bijker, F. Iachello

 

and A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994).



Quarks are fermions and therefore their total wave function 
must be antisymmetric.

Hadrons are colorless and therefore their color wave 
function is antisymmetric

 
(color singlet).

Hence the space-spin-flavor wave function must be symmetric.

The space wave-function must be combined with the 
spin-flavor part to give symmetric wave functions, i.e. the 
symmetry of the space wave functions must be the same 
as the symmetry of the spin-flavor part.
The parity of the states is given by complicated rules.



Combination of space and spin-flavor (labels of the representations)

Space
D3h

A1

A2

E

Spin-flavor
SUsf

 

(6)

56

20

70

Young tableau

S≡

A≡

M≡



Spectrum of the oblate top with D3h

 

symmetry



OBSERVED MASS SPECTRUM OF BARYONS (SPACE)

N-family



TRANSITIONS

Transition operators can be written as tensors in the space

(6) (3) (2)sf f sSU SU SU⊃ ⊗

(6)
(2) (3)( ) sf

s f

SU
SU SUf T ⊗ℜ

All matrix elements, diagonal and non-diagonal, can then be 
calculated from

[ ] [ ] [ ] [ ](6)
3 3 (2) (3) 3 3''; '' , '' , '', '', '', '', '' ( ) '; ' , ' , ', ', ', ', 'sf

s f

SU
SU SUR S I Y I S f R T R S I Y I Sλ μ λ μ⊗



The calculation involves the evaluation of the space part

'' ( ) 'R f R R

and the SUsf

 

(6) part

[ ] [ ] [ ] [ ](6)
3 3 (2) (3) 3 3'' , '' , '', '', '', '', '' ' , ' , ', ', ', ', 'sf

s f

SU
SU SUS I Y I S T S I Y I Sλ μ λ μ⊗

The latter is given in terms of the reduced matrix elements 
and of the Clebsch-Gordan

 
coefficients of

(6) (2) (3) (2) (2) (1)sf s f s I YSU SU SU SU SU U⊃ ⊗ ⊃ ⊗ ⊗



Example:
Calculation of the magnetic moment of baryons in the 56 
representation

The magnetic moment operator can be written as 

3

2

2

e Q
m

YQ I

μ σ=

= +

This operator is a generator of SUsf

 

(6) belonging to the 
representation 35 and component 28 of SUs

 

(2)≈
 

SUf

 

(3).
The magnetic moments of baryons in the representation 
56=410∆2

 

8 are thus proportional to the matrix elements

56 35 56



Consider now the product
35 56 700 1134 70 56 1960⊗ = ⊕ ⊕ ⊕ =

Since 56 is contained only once in the product, then all 
matrix elements are given in terms of Clebsch-Gordan

 coefficients and the reduced matrix elements

56 35 56

As a result
2
3
3 1.5
2

p

n

p

n

μ μ

μ μ

μ
μ

=

= −

= − = −

Experiment:

Considered one of the greatest successes of algebraic methods in
 physics.

[For magnetic moments, there is no space part, and thus the 
calculation is just                               ].' '''' 1 ' R RR R δ=

1.46 0.02p

n

μ
μ

= − ±



CONCLUSIONS

For the algebraic quark model, AQM, the application 
of Lie algebraic methods is very intricate due to the 
combination of space and internal degrees of freedom 
and of the many conditions imposed on the wave 
functions.

What is required for the internal degrees of freedom
 

is
• Construction of the representations
• Branching of the representations

For the space degrees of freedom
 

one needs
• Construction of the algebra
• A generalization of the concept of DS





Hadrons in a string-like model
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