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Algebraic Approach Basic Steps

@ Definition of the Spectrum Generating Algebra (SGA), aka
Dynamical Algebra, for the system under study.

Every operator is expressed in terms of the SGA generators.

Consideration of the possible Dynamical Symmetries.

Dynamical symmetries' branching rules and Casimir operators
eigenvalues.
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Algebraic Approach Basic Steps

@ Definition of the Spectrum Generating Algebra (SGA), aka
Dynamical Algebra, for the system under study.

@ Every operator is expressed in terms of the SGA generators.
o Consideration of the possible Dynamical Symmetries.

@ Dynamical symmetries’ branching rules and Casimir operators
eigenvalues.

@ Phenomenological Approach: find parameter values that
optimize the agreement with experimental data.
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Definitions: Spectrum Generating Algebra (SGA)

Definition

The Spectrum Generating Algebra (SGA) is such that its
generators allow to connect the eigenstates of the system's
Hamiltonian. Thus, the system’s Hilbert space carries an
irreducible representation (irrep) of the SGA. The Hamiltonian and
every other operator of interest are written in terms of the SGA
generators.
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Definitions: Symmetry Algebra & Dynamical Symmetry

Definition

The Symmetry Algebra (SA) is a subalgebra of the SGA containing
the SGA generators that commute with the Hamiltonian operator.
Degenerate eigenstates carry SA irreps.
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Definitions: Symmetry Algebra & Dynamical Symmetry

Definition

The Symmetry Algebra (SA) is a subalgebra of the SGA containing
the SGA generators that commute with the Hamiltonian operator.
Degenerate eigenstates carry SA irreps.

Definition

Dynamical Symmetries (DS) are subalgebra chains starting in the
SGA and ending in the SA. They represent limiting physical
situations that are analytically solvable. Each DS provides a basis
to carry out the calculations.
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Algebraic approach to molecular spectroscopy: the Vibron
Model

F. lachello, Contemp. Math. 160 151 (1994)
Study of N—dimensional systems = U(N + 1) SGA

Chlorine monofluoride

Cl—F

@ Dipolar interaction: N =3 —
e SGA: U(4) 162.81 pm
e Vibron Model (VM)
@ F. lachello

Chem. Phys. Lett. 78 581 (1981)

@ 1D and 2D limits of the Vibron Model

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction

Single Bender Modeling: The 2D Vibron Model A primer on the algebraic approach
QPT and ESQPT for a Single Bender Algebraic approach to molecular structure
Algebraic Approach to Coupled Benders Some considerations on molecular spectroscopy
Conclusions

The Vibron Model: U(4) dynamical algebra

U(4) Lie Algebra applied to rovibrational molecular structure.

Modeling systems algebraically.

Volume 78, number 3 CHEMICAL PHYSICS LETTERS 15 March 1981

ALGEBRAIC METHODS FOR MOLECULAR ROTATION—VIBRATION SPECTRA

F.1ACHELLO
Kernfysisch Versneller Instituut, University of Groningen, The Netherlands
and Physics Department, Yale University, New Haven, Connecticut 06520, USA

Received 10 December 1980

Algebraic techniques sm'u.h.r to those recently mtmduced in nuclear physlcs may be useful in the treatment of molecular
spectra, A algebra 0 This algebra, U(4), is the simplest
generalization to 3-D of the algebra of the 1-D Morse oscillator and a slmphﬂ:mon of the U(6) algebra of nuclear rotation—
vibration spectra.
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The Vibron Model main ingredients

Boson Operators: {piy,pa,sT.s}; a==+1,0

[ﬁa)pg} = 50&,6 ' aaﬂ = _15071 [§7 ST] =1

Spherical Bosons: {pjt,pg,sT,ﬁi = px,Po = —po,5 = s}
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The Vibron Model main ingredients

Boson Operators: {pl:,pa,sT,s}; a==+1,0
[5047PH = 60&,5 ' aaﬁ = _17071 |:§7 ST] =1

Spherical Bosons: {pjt,pg,sT,ﬁi = px,Po = —po,5 = s}

Generators of the U(4) SGA

fip

L Z\f[p x Bl Qyz[pTXﬁ](f)

R,=[p" x5— xﬁ]&l); ﬁu:i[pTx§+sT><;3]f})
pw==x1,0;v==+2 41,0
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2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries

U@4) o UB) D SO(3) Dyn.Symmetry (I)

N np L
U(4) > SO(4) D> SO(3) Dyn.Symmetry (II)
N w L
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2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries
U@é4) o U@B) D SO(3) Dyn.Symmetry (I)

N np L
U(4) D SO(4) D> SO(3) Dyn. Symmetry (Il)
N w L
Dynamical Symmetries Generators
U3) {”pv Luv Qv}
50(4) {L. D}
S0(3) {0
u@E) GluR)=ap Cz[U(3)] = fp(Ap +2)
SO(4) C[S0(4)] = 2 + D

50(3) &[S0(3 )] [2
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2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries

U@4) o UB) D SO(3) Dyn.Symmetry (I)

N np L
U(4) > SO(4) D> SO(3) Dyn.Symmetry (II)
N w L

General one- and two-body Hamiltonian operator
H = Ey+efip+ (i, +2) + A(L? + D?) + B2
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Dynamical symmetry Il: SO(4) limit spectrum

F. lachello. Chem. Phys. Lett. 78 581 (1980).

—_—— —
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Fig. 1. A typical spectrum with O(4) symmetry and V = 29. The energy levels are given by (19) with —4(8 + 4N) = 4395.24 cm™},

B =60.809 cm™* and are counted from the lowest level v = 0,7 = 0. The quantum numbersJ and v = (V — w)/2 are given next to
the levels.
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The 1D limit of the Vibron Model

The U(2) Lie algebra applied to the study of vibrational molecular
structure modeling (coupled) 1D systems algebraically.

0.S. van Roosmalen, I. Benjamin, and R.D. Levine J. Chem. Phys. 81
5986 (1984).

A unified algebraic model description for interacting vibrational modes
in ABA molecules

0. S. van Roosmalen®
Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

1. Benjamin and R. D. Levine
The Fritz Haber Molecular Dynamics Research Center, The Hebrew University, Jerusalem 91904, Israel

(Received 9 April 1984; accepted 6 July 1984)

A simple yet realistic model Hamiltonian which describes the essence of many aspects of the

i ion of vibrati modes in ics is di The general form of the Hamiltonian
is that of an intermediate case between the purely local mode and purely normal mode limits.
Resonance interactions of the Fermi and Darling-Dennison types are shown to be special cases.
The classical limit of the Hamiltonian is used to provide a geometrical content for the model and
to illustrate the “phase-like” transition between local and collective (i.e., normal) mode behavior.
Such transitions are evident as the coupling parameters in the Hamiltonian are changed and also
for a given Hamiltonian as the energy is changed. Applications are provided to higher lying
vibrational states of specific molecules (H,0, O,, SO,, C,H,, and C,D,).
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The 1D limit of the Vibron Model

Incorporation of molecular point group symmetries and application
to vibrational spectrum of polyatomic molecular species.
R. Lemus. Mol. Phys. 101 2511 (2003).

A general method to obtain vibrational symmetry adapted bases in
a local scheme

R. LEMUS*

Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México,
A.P. 70-543, Circuito Exterior, C.U., 04510 Mexico, D.F., Mexico

(Received 11 November 2002, revised version accepted 29 April 2003)

A general approach to obtain symmetry adapted bases from a local set of states is presented. The
approach is based on the identification of the invariant subspaces which, when projected by
means of the eigenfunction method developed by Chen (1989, Group Representation Theory
for Physicists Singapore, World Scientific), allow the generation of a symmetry adapted basis.
The symmetrized functions so obtained are further taken as a basis to diagonalize
simultaneously a set of normal number operators, which provides a set of normal states
expanded in terms of the symmetry adapted local basis. In this approach the normal number
operators are generated implicitly from the one quantum space through a tensorial formalism.
Although the normal operators are defined in a harmonic basis, the locality of the basis allows
the approach to be extended to anharmonic functions. This approach has the additional
advantage of allowing the elimination of the spurious states, a common problem in a local
coordinate representation. An important advantage of this symmetrization method is that it
allows generation of a code to analyse any molecular system with a minimum set of input data.
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The 2D limit of the Vibron Model: bending vibrations

The U(3) Lie algebra applied to the study of 2D systems (benders).
F. lachello and S. Oss. J. Chem. Phys. 104 6956 (1996).

Algebraic approach to molecular spectra: Two-dimensional problems

F. lachello

Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520-8120
S. Oss

Dipartimento di Fisica, Universita di Trento and Istituto Nazionale di Fisica della Materia,

38050 Povo (TN), Italy

(Received 27 October 1995; accepted 7 February 1996)

The Lie algebraic approach is extended to two-dimensional problems (rotations and vibrations in a
plane). Bending vibrations of linear polyatomic molecules are discussed. The algebraic approach is
particularly well suited to treat coupled bending modes. The formalism needed to treat coupled
benders is introduced and a sample case, acetylene, is analyzed in terms of two coupled local
benders. © 1996 American Institute of Physics. [S0021-9606(96)01818-5]
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Molecular Spectroscopy: Water

Example: H20, X electronic state, Cp, symmetry

Modern spectroscopy techniques allow the precise measurement of
highly-excited rovibrational molecular states (approx. 10° experimental
term energies).
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Molecular Spectroscopy: Water

Example: H20, X electronic state, Cp, symmetry

Modern spectroscopy techniques allow the precise measurement of
highly-excited rovibrational molecular states (approx. 10° experimental
term energies).

Rotational excitation: asymmetric rotor

H>O: JKAKC’ 1o1 = 23.79 cmfl, 1,0 = 42.37 cm~!
— Eor ~ 10 cm™! ~ 0.0012 eV
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Molecular Spectroscopy: Water

Example: H20, X electronic state, Cp, symmetry

Modern spectroscopy techniques allow the precise measurement of
highly-excited rovibrational molecular states (approx. 10° experimental
term energies).

Rotational excitation: asymmetric rotor

H>O: JKAKC’ 1o1 = 23.79 cmfl, 1,0 = 42.37 cm~!
— Eor ~ 10 cm™! ~ 0.0012 eV

Vibrational excitation, water normal modes
H,O, stretching: A symm. v; = 3657.053 cm™1;

B symm. vz = 3755.029 cm~! — E, ~ 0.4 eV
H,0, bending: A symm. v, = 1594.746 cm™! — Epeng ~ 0.1 eV
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Molecular bending vibrations

< ., &

wwwl.lsbu.ac.uk/water

Bending Vibrations

o Different experimental techniques to access
different energy scales involved.

@ Many experimental energy levels.
e Experimental errors < 1/1000.

@ Highly-excited bending overtones at reach.
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Molecular bending vibrations
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Bending Vibrations

o Different experimental techniques to access
different energy scales involved.

@ Many experimental energy levels.

e Experimental errors < 1/1000.

@ Highly-excited bending overtones at reach.
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The 2D Limit of the Vibron Model (2DVM)

The 2D limit of the vibron model is the simplest two-level model
which still retains a non-trivial angular momentum quantum
number.

It has been successfully applied to the modeling of the bending
vibrational dynamics of several molecular species.

F. lachello and S. Oss. J. Chem. Phys. 104 6956 (1996)
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The 2D limit of the vibron model (2DVM)

Boson Operato {T,-T,T,-,JT,U}; i=x,y

[Ti,TjT] =0ij: LI=Xy [o,0T] =1
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The 2D limit of the vibron model (2DVM)

Boson Operators: {T,-T,T,-,JT,U}; i=x,y

[7‘;,7}?]:6&;; I,j =X,y [0,07] =1

d-F

77-:
V2 ST
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The 2D limit of the vibron model (2DVM)

Boson Operators: {T,-T,T,-,JT,U}; i=x,y

[Ti,ﬂ =0ij: LI=Xy [o,0T] =1

Circular Bosons
o+l T ]
Tx £ 1Ty Tx F 17y

77-:
V2 ST

d-F

Generators of the U(3) SGA

{ﬁa ﬁSaga Qiy R\)i, ﬁi}

FPB and F. lachello. Phys. Rev. A77 032115 (2008)
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2DVM Dynamical Symmetries and Hamiltonian
Dynamical Symmetries

UB) > U(@) D S0O(2) Dyn.Symmetry (I)

N n l
UB) D SOB) D SO(2) Dyn. Symmetry (Il)
N w l
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The U(3) algebraic approach
Comparison with experimental data

2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries
UB) D U(@) D S0O(2) Dyn.Symmetry (I)

N n l
UB) D SOBB) D SO(2) Dyn. Symmetry (Il)
N w 14
uR) {a= Tj_ Ty 47 T 0 Q+ = \[7'4_7'_ Q. = \ﬁ717+}
S0(3) {4 D, = \f(T_JLU —otr )i D_ = V2(~1lo + o)}

(
50(2) A {f: T_‘I;'-_7-+ — i }
u@) GlU@E)I=4 G&IUQR)]=A(A+1)
S0(3) &[SO(3)] = W2 —MM?
50(2) G[so2) =7  &[S0(2)] = 2
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2DVM Dynamical Symmetries and Hamiltonian
Dynamical Symmetries

UB) > U(@) D S0O(2) Dyn.Symmetry (I)

=
3
~

UB) D SO(3) D SO(2) Dyn.Symmetry (lI)

General one- and two-body Hamiltonian operator
A=ch+a(fi+1)+ B2+ AW?
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Correlation Energy Diagram

H=c¢ (1—§)ﬁ+%ﬁ’

Energy (arbitrary units)

Control Parameter (&)
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Simple Concepts on Classical Phase Transitions

Phase state of matter that is uniform throughout, both in
its chemical composition and its physical properties
Phase Transition marked by an abrupt change in one or more
properties of the system

@ Most stable phase is the one with the lowest thermodynamical

potential (®) which is a function of variable parameters
(F(T,V), F(T,B); G(T,p), G(T,M)).
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Simple Concepts on Classical Phase Transitions

Phase and Phase Transition

Phase state of matter that is uniform throughout, both in
its chemical composition and its physical properties

Phase Transition marked by an abrupt change in one or more
properties of the system

@ Most stable phase is the one with the lowest thermodynamical
potential (®) which is a function of variable parameters
(F(T,V), F(T,B); G(T,p), G(T,M)).

e ® is analogous to the potential energy, V(x), of a particle:
systems like minimum energy states, in potential minima.
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Transition Parameters and Classification

Control Parameters parameters of the thermodynamical potential
® that can be changed arbitrarily and smoothly (e.g.
T, p, external B).

Order Parameters observables that are changing as the control
parameters are varied. Typically they are zero in one
phase and different from zero in the other one.
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Transition Parameters and Classification

Control and Order Parameters

Control Parameters parameters of the thermodynamical potential

® that can be changed arbitrarily and smoothly (e.g.
T, p, external B).

Order Parameters observables that are changing as the control
parameters are varied. Typically they are zero in one
phase and different from zero in the other one.

Classification

First Order Involve latent heat.

Continuous Does not involve latent heat.
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QPTs in the 2DVM

Quantum Phase Transitions

Let's consider a system that is composed by two parts, having each
one a different symmetry: G; and Go.

QPT occurs at some critical value (x.) of the control parameter x,
that controls an interaction strength in the system’s Hamiltonian
H(x), is varied.

A A

H=xH+(1-x) H,

At the critical point:

© The ground state energy Egy is nonanalytic.

@ The gap A between the first excited state and the ground
state vanishes.
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Energy Surfaces

Quantum Phase Transitions
QPTs in the 2DVM

First order transitions (blue) and Continuous transitions (red)
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Shape Phase Transitions

Ground State Quantum Phase Transitions

Singularities in the evolution of the system’s ground state
properties (shape phase transitions) as a control parameter is
varied (aka zero-temperature phase transitions).

P. Cejnar and J. Jolie. Prog. Part. Nucl. Phys. 62 210 (2009)

P. Cejnar, J. Jolie and R. Casten. Rev. Mod. Phys. 82 2155 (2010)
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Ground State Quantum Phase Transitions

Singularities in the evolution of the system’s ground state
properties (shape phase transitions) as a control parameter is
varied (aka zero-temperature phase transitions).

P. Cejnar and J. Jolie. Prog. Part. Nucl. Phys. 62 210 (2009)

P. Cejnar, J. Jolie and R. Casten. Rev. Mod. Phys. 82 2155 (2010)

Shape phase transitions strictly take place at the thermodynamic
limit (large N): importance of precursors for mesoscopic systems
and the scaling behavior of the relevant quantities.
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Shape Phase Transitions

Excited State Quantum Phase Transitions

Is this behavior extensible to states throughout the excitation
spectrum? Yes

ESQPT are universal to two-level pairing many-body models for
both bosonic and fermionic constituents.

M.A. Caprio, P. Cejnar, F. lachello. Ann. Phys. 323 1106 (2008).

Shape phase transitions strictly take place at the thermodynamic
limit (large N): importance of precursors for mesoscopic systems
and the scaling behavior of the relevant quantities.
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Intrinsic state: connection with the classical limit

lis) =|[N];r,0) = \/%(bi)l\lIO)
1

bZ = |:O'T +x7) + yT;]

Model Hamiltonian and Energy per Particle

N—-1

r 01 r 2 _P 2
gq(r) = LI ORI 0) [(1—@Hr2 +5(1+,2> ]

f[:e[(l—g)ﬁ—i—glﬂ

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model -
QPT and ESQPT for a Single Bender 8;?;‘“;;%’: s ens
Algebraic Approach to Coupled Benders s €
Conclusions

Ground State Energy

1+r2

3 !
re - 07 3€+17

E(r) = el(l—s) - +f(1"2ﬂ,

3 0<¢§<éc
Ee(re) = { 7952;%150571 fo<e<1
d?E(re) B 0 0<¢&<&
dez {—823 fe<é<1

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction

Single Bender Modeling: The 2D Vibron Model
QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders
Conclusions

Ground State Energy

Er) = |- +5(1_’2>2 ”

1+r2
5¢—1
T O Eer
£ 0<¢&<é
Ee(r.) = —9€21106—
o) = | et ¢ cecn

PE(re) { 0 0<e<é

de? —ge5 & <E<1

Curro Pérez Bernal

14 r2

Quantum Phase Transitions
QPTs in the 2DVM

0.25~

)

Ey/N)
°
°
5
- R

o
5
T

)

Ground State Energy per Particle (€,
°
=)
T

— Mean Field
o Numerical, N = 40

o

o

a
T

PRI AN R R AR A
0'0%.0 0.2 0.4 0.6 0.8

Control Parameter (£)

FISIMAT 2015 // The Vibron Model

1.0



()
()

([NT; r, 01A|IN]; 7, 0)

I, 0355&

2 0
N1+r§:{ B Le<é<1.

«O0>» «F» « E>»




Introduction
Quantum Phase Transitions

Single Bender Modeling: The 2D Vibron Model
QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders
Conclusions

Expected value of 7, the number of 7 bosons

(A) = ([N r,0lA|[N]; r,0)
: 0 0<é<é

() = Npts=
1+re2_ 5%721 e <<l

Curro Pérez Bernal

QPTs in the 2DVM

I o <
N w 'S
T T T

Normalized Order Parameter (n(€))/N

o
T

0.0 fesose02™

!

%
1

s

>
e

© N=40
-- Mean Field _|

Ll b b L
1.

0.0

0.2 . . .
Control Parameter &

FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

. Quantum Phase Transitions
QPT and ESQPT for a Single Bender .
Algebraic Approach to Coupled Benders QPTsiin the 2DVM
Conclusions

Single Bender Mondel Hamiltonian Phase Diagram

UB) D> U(2) D S50(2) Dynamical Symmetry (I)
UB) D SO(BB) D> S0(2) Dynamical Symmetry (I1)

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

. Quantum Phase Transitions
QPT and ESQPT for a Single Bender .
Algebraic Approach to Coupled Benders QPTsiin the 2DVM
Conclusions

Single Bender Mondel Hamiltonian Phase Diagram
UB) D> U(2) D S50(2) Dynamical Symmetry (I)
UB) D SO(BB) D> S0(2) Dynamical Symmetry (I1)

Single Bender Model Hamiltonian

H=c¢ (1—§)ﬁ+%ﬁ’

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

. Quantum Phase Transitions
QPT and ESQPT for a Single Bender .
Algebraic Approach to Coupled Benders QPTsiin the 2DVM
Conclusions

Single Bender Mondel Hamiltonian Phase Diagram

UB) D> U(2) D S50(2) Dynamical Symmetry (I)
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Single Bender Model Hamiltonian

H=c¢ (1—§)ﬁ+%ﬁ’

@ c: energy scale

@ ¢&: control parameter: ¢ € [0,1]

e £=0.0 rigidly-linear

@ 0.0 < ¢ <0.2 quasilinear
e 0.2 < ¢ < 1.0 non-rigid

e £=1.0 rigidly-bent
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Single Bender Model Hamiltonian

H=c¢ (1—§)ﬁ+%ﬁ’

0 c: I
& enerey scale The system undergoes a

@ &: control parameter: £ € [0, 1] second order QPT in
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Algebraic approach to coupled benders
Two coupled benders dyn. algebra: U;(3) x Ua(3):

501(2) ® SO2(2)
U13)® U(3) D U1(2) ® U2(2)

U12(2)
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Algebraic approach to coupled benders
Two coupled benders dyn. algebra: U;(3) x Ua(3):

501(2) ® S02(2)
LB © k@) > U2 U2
U12(2)
501(2) ® SO»(2)
U13) ® h(3) D SO:1(3) ® SO,(3)

S012(3)

(l1a)

5012(2),

(I1b)

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model itz @uppts! 2DV meel]

: Coupled benders classical limit and phase diagram
AIQei—rraiini Esrgigtfgrciflv;geBBe(:’i: Symmetry adapted basis and correlation energy diagram
€ °P pled Benders Fit to Formaldehyde (CH,0) experimental data

Algebraic approach to coupled benders
Two coupled benders dyn. algebra: U;(3) x Ua(3):

501(2) ® SO-(2)

U13)® U(3) D U1(2) ® U2(2)

/
U12(2)
501(2) ® S0(2) (Ila)
\
Ui(3)® La(3) D SO1(3) ® SO:(3) S012(2),
/
S012(3) (1)
U12(2) (l1a)
/ \
Ui(3)® Lb(3) D Un2(3) , 5012(2),
S015(3) (I1b)
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Block Dimensions in the Coupled Benders Hamiltonian

The two-fluid model implies a huge increase in Hamiltonian block
dimensions.
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Block Dimensions in the Coupled Benders Hamiltonian

The two-fluid model implies a huge increase in Hamiltonian block
dimensions.
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Coupled Benders Hamiltonian (ABBA molecules)

General Hamiltonian (9 parameters)

H=E;+ e (M + f2) + a[M(hr + 1) + (A2 + 1)] 4+ ar2fifi
+)\(D1‘52+f%1‘/%2)+3(§1 . Q2+A(W12+ W22)+A12W1 - Wh

+ ﬁ(ﬁ + 2%) + B2 b
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Coupled Benders Hamiltonian (ABBA molecules)

General Hamiltonian (9 parameters)

H=E;+ e (M + f2) + a[M(hr + 1) + (A2 + 1)] 4+ ar2fifi
+)\(D1‘52+f%1‘/%2)+3(§1 . O2+A(W12+ W22)+A12W1 - Wh

+ 5(23 + 2%) + B2 b

Model Hamiltonian (3 control parameters: 0 < ¢ <1, 7y, and 72 < 0)

ﬁ:a{<1—g)[m+ﬁ2+%@1-@}+g[ﬁ1+ﬁz+zmmwg]}
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Coupled Benders Hamiltonian (ABBA molecules)

General Hamiltonian (9 parameters)
A =Ej + & (A + i2) + a[Ar(A + 1) + Ao(f2 + 1)] + arzfir o
+)\(D1‘52+f%1‘/%2)+3(§1 . O2+A(W12+ W22)+A12W1 A
+ 5(23 + 2%) + B2 010,

Model Hamiltonian (3 control parameters: 0 < ¢ <1, 7y, and 72 < 0)
A=efa-o[nsme s 0 O]+ 5 [Pt ot 2m Vi ia) |

Rigidly-bent molecular species (4 parameters: A, A, Ajp and 1)

/:I:E6+)\(é1~624—’%1~f%2)—|—A(W12—|—W22)+A12W1~W2+T(g1—g2)2
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Coupled Benders Hamiltonian (ABBA molecules)

General Hamiltonian (9 parameters)
A =Ej + & (A + i2) + a[Ar(A + 1) + Ao(f2 + 1)] + arzfir o
+)\(D1‘52+f%1‘/%2)+3(§1 . O2+A(W12+ W22)+A12W1 A
+ 5(23 + 2%) + B2 010,

Model Hamiltonian (3 control parameters: 0 < ¢ <1, 7y, and 72 < 0)
A=efa-o[nsme s 0 O]+ 5 [Pt ot 2m Vi ia) |
Rigidly-bent molecular species (4 parameters: A, A, Ajp and 1)
/:I: Eé—i—)\(él 624—’%1 . ,%2)+A(W12+ W22)+A12W1 . WQ-‘FT(@:{ —E2)2

F. lachello and FPB, Mol. Phys. 106 223 (2008); F. lachello and FPB, J. Phys. Chem. A 113 13273 (2009);

FPB and L. Fortunato, Phys. Lett. A 376 236 (2012); D. Larese et al., J. Chem. Phys. 140, 014304 (2014)
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Projective coherent states (coupled case)

We define the intrinsic state and the boson condensate as

[[Mi][N2]; 11, 6152, 62) = W(b&l)m (bi,z)Nz

1
bl = —— [UT + (X,-T-T +yr! )]
C,I /1 + r2 1 I,Xx -y Ly

0)

{0 e
61," [ 92 [T
where (r;, 0;) are associated to the bending R A<D
L S
angles. @7% S
i RS LA
/ VY
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Geometrical interpretation of r, and r,. Planar case.

The 1 and r, parameters are related to the angles measuring the
deviation from linearity and thus they are finite and can take positive or
negative values.

+1,+1

5]

+1,-1 trans

—-1,+1 trans

—_
5]

_,
=
;\
=
I
)]
=
o 3
[
=
N
Positive 1 direction
Positive 2 direction

(5]

-1,-1 cis
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Coupled Benders Model Hamiltonian Energy Functional

{(1—5)[n1+nz+*01 Qz] % 1+F’2+2772W1 Wz}}
E(n,n,¢) = 15)[ 1+r < >cos (2¢)

I

+¢

I
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Coupled Benders Model Hamiltonian Energy Functional

{(1—5) [n1+n2+—

€(r1,r2,¢) 175) |:

Sl

I

1+r

1

4

1-—

¢ 1+r

Linear, Doop
n=n=0

X)

(CaHo,
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Coupled Benders Model Hamiltonian Energy Functional
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€(r1,r2,¢) 175) |:

1 + r
2
1 1-—
> <1 =
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Coupled Benders Model Hamiltonian Energy Functional
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Coupled Benders Model Hamiltonian Energy Functional

:5{(1—5) [n1+n2+ = Q- Qz]
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1 + r
2
1 1-—
> <1 =
Linear, Doop Cis, Coy
n=n=20 nr>0,¢=0
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Symmetry adapted basis: planar cis (C,,) case

Starting point: Local type la basis

0, Ml ) = TT Mo, (o)™ () T () T 10y

i=1,2

Normalization constant N,
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Symmetry adapted basis: planar cis (C,,) case

Starting point: Local type la basis

N,-fn,- - 3
N Nl gy = TT Mo (o) (710) 7 (712) 7 1)
i=1,2

Normalization constant N,

o 51,
ol

Truncated HO basis in polar coordinates (r;, 6;)

2
i;0; . o =L 14 2
wnflnfz(rl’el’ r2,02) = l l N"ffjf"jfj(ajrj)el T f"jfj(')') = rJl e~ L”J'J*Mj\ (rj)
j=1,2 2

with inverse oscillator length and normalization constant

Q= \/“’M‘u/’L PN =
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Symmetry adapted basis: planar cis (C,,) case

Cay ‘ E G o0 o0y
A 1 1 1 1
A 1 1 -1 -1
B 1 -1 -1 1
A 1 -1 1 -1
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Symmetry adapted basis: planar cis (C,,) case

Cav ‘ E Cox Oxz Oxy
A1 1 1 1 1
Az 1 1 -1 -1
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C2>< 91 — —092 and 092 — —01
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Symmetry adapted basis: planar cis (C,,) case

C2v ‘ E C2x Oxz Oxy
A1 1 1 1 1 X3 Oxy exl 6. X3
All 1 a1 2 ;] =
B |1 -1 -1 1 " V2
A |1 -1 1 -1
¢ —0 —
0 01— —01 and 6> — —6, Orz Or| ! nf) = |ny "ny )
Cox 61 — —6> and 6, — —6; Cox nglnl 2) = |n—€z 1—£1>

Oxy 01 — 6> and 0> — 01 ny ny|”1 n2>_|n2 n1>

The symmetry adapted basis is built through diagonalization of a
CSCO, in particular Ocsco = 3Cox + 4.
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Correlation energy diagram: from linear to trans
configuration

/51+/52

Wy - W
2 - <
N + 2120

He =(1—&)eo (A + Ax) + € | Ao

1\ M

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction

Single Bender Modeling: The 2D Vibron Model
QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders
Conclusions

The coupled 2DVM model

Coupled benders classical limit and phase diagram
Symmetry adapted basis and correlation energy diagram
Fit to Formaldehyde (CH20) experimental data

Correlation energy diagram: from linear to trans

configuration
ﬂ/a:(1—£)€0<21+22)+§[A0P1+P2 + 2999 Wl'WZ} +2(§_ 1) roo
N N 2 N
5 T T T T
e .
2h N=20,¢,=20.1)=-20, A, =25, A =1 |— A

[a100t

[©pog® !

\
>
P T B ST ST

Curro Pérez Bernal

04 0.6
Control Parameter (&)

FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model itz @tpeits ADV) el

: Coupled benders classical limit and phase diagram
AIQeTJLiacni Esrgigtfgr(:i?’l‘geBBe?c‘ii(: Symmetry adapted basis and correlation energy diagram
€ °P pled Benders Eit to Formaldehyde (CH,0) experimental data

Correlation energy diagram: from linear to trans
configuration

R By 4+ B Wy - 1 i
’H/E:(l—&)eo(ﬁl+22)+§[Ao lN 2 | 2o lN 2}+z(§—5>xof .

N
C2h N=20,€,=20,1y=-20, A =25, A = |
) ) 2
i —Al ]t :
o3n — A T 1 aoor [
H B | 1 AaBa 19+
| ' F 17r
r __ B 1 (100) L
L o] I AgBg L
s [ ] —
< '
W o2 B
=
= | J
[ J
2
I oo ]
c
(T -
ot Y B
(@002 ]
L \, AgBy ]
(000
r AgBy 7
[(000) o]
o2 D A 1 i L 15
0.6 08 1 07 08 09 1708 1
Control Parameter (£) [CAAAL

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



@ Introduction

@ A primer on the algebraic approach
@ Algebraic approach to molecular structure
@ Some considerations on molecular spectroscopy
Q Single Bender Modeling: The 2D Vibron Model
@ The U(3) algebraic approach
@ Comparison with experimental data
© QPT and ESQPT for a Single Bender
@ A pedestrian primer on QPTs
@ QPTs and ESQPT in the 2D Vibron Model
e Algebraic Approach to Coupled Benders
@ The coupled 2DVM model
@ Coupled benders classical limit and phase diagram
@ Symmetry adapted basis and correlation energy diagram
@ Fit to Formaldehyde (CH20) experimental data
9 Conclusions

«O0)>» «Fr « > « = Q>



Introduction

Single Bender Modeling: The 2D Vibron Model e coupledi2DVM model _
5 Coupled benders classical limit and phase diagram
QPT ‘and EAIPT ffor 2 Silugle [Bemiler Symmetry adapted basis and correlation energy diagram
Algebraic Approach to Coupled Benders

Conclusions Fit to Formaldehyde (CH20) experimental data

Formaldehyde normal modes of vibration

Point group symmetry Cp,
3N — 6 = 6 non-degenerate normal modes of vibration.
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Concluding Remarks

@ Take-home message: algebraic methods based on symmetry
considerations are a powerful tool for the modeling of many physical
systems, in particular molecular structure.

@ Molecular spectroscopy can access highly—excited states giving
experimental evidence for QPTs and ESQPTs.

@ Coupled systems display a rich gamut of interesting physical
situations where the phase transition formalism can thrive.

@ Many interesting open questions and problems: experimental study
of QPT and ESQPT, ESQPT in coupled systems, normal-local
transitions in benders, continuum effects in algebraic models,
endohedral systems, lattice systems...
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Thanks for your kind attention...
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