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Algebraic Approach Basic Steps

Definition of the Spectrum Generating Algebra (SGA), aka
Dynamical Algebra, for the system under study.

Every operator is expressed in terms of the SGA generators.

Consideration of the possible Dynamical Symmetries.

Dynamical symmetries’ branching rules and Casimir operators
eigenvalues.

Phenomenological Approach: find parameter values that
optimize the agreement with experimental data.
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Definitions: Spectrum Generating Algebra (SGA)

Definition

The Spectrum Generating Algebra (SGA) is such that its
generators allow to connect the eigenstates of the system’s
Hamiltonian. Thus, the system’s Hilbert space carries an
irreducible representation (irrep) of the SGA. The Hamiltonian and
every other operator of interest are written in terms of the SGA
generators.
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Definitions: Symmetry Algebra & Dynamical Symmetry

Definition

The Symmetry Algebra (SA) is a subalgebra of the SGA containing
the SGA generators that commute with the Hamiltonian operator.
Degenerate eigenstates carry SA irreps.

Definition

Dynamical Symmetries (DS) are subalgebra chains starting in the
SGA and ending in the SA. They represent limiting physical
situations that are analytically solvable. Each DS provides a basis
to carry out the calculations.
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Algebraic approach to molecular spectroscopy: the Vibron
Model

F. Iachello, Contemp. Math. 160 151 (1994)

Study of N–dimensional systems ⇒ U(N + 1) SGA

Molecules

Dipolar interaction: N = 3

SGA: U(4)

Vibron Model (VM)

F. Iachello
Chem. Phys. Lett. 78 581 (1981)

1D and 2D limits of the Vibron Model
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The Vibron Model: U(4) dynamical algebra

U(4) Lie Algebra applied to rovibrational molecular structure.
Modeling 3D systems algebraically.
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The Vibron Model main ingredients

Boson Operators: {p†α, pα, s†, s}; α = ±1, 0[
p̃α, p

†
β

]
= δα,β ; α, β = −1, 0, 1

[
s̃, s†

]
= 1

Spherical Bosons:
{
p†±, p

†
0, s
†, p̃± = p∓, p̃0 = −p0, s̃ = s

}

Generators of the U(4) SGA

n̂p =
√

3[p† × p̃](0) ; n̂s = s†s̃

L̂µ =
√

2[p† × p̃](1)
µ ; Q̂ν = [p† × p̃](2)

ν

R̂µ = [p† × s̃ − s† × p̃](1)
µ ; D̂µ = i [p† × s̃ + s† × p̃](1)

µ

µ = ±1, 0; ν = ±2,±1, 0
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2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries

U(4) ⊃ U(3) ⊃ SO(3) Dyn. Symmetry (I)
N np L

U(4) ⊃ SO(4) ⊃ SO(3) Dyn. Symmetry (II)
N w L

U(3) Ĉ1[U(3)] = n̂p Ĉ2[U(3)] = n̂p(n̂p + 2)

SO(4) Ĉ2[SO(4)] = L̂2 + D̂2

SO(3) Ĉ2[SO(3)] = L̂2

General one- and two-body Hamiltonian operator

Ĥ = E0 + ε n̂p + α n̂p(n̂p + 2) + A (L̂2 + D̂2) + B L̂2

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model
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Dynamical symmetry II: SO(4) limit spectrum

F. Iachello. Chem. Phys. Lett. 78 581 (1980).
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The 1D limit of the Vibron Model

The U(2) Lie algebra applied to the study of vibrational molecular
structure modeling (coupled) 1D systems algebraically.

O.S. van Roosmalen, I. Benjamin, and R.D. Levine J. Chem. Phys. 81

5986 (1984).
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The 1D limit of the Vibron Model

Incorporation of molecular point group symmetries and application
to vibrational spectrum of polyatomic molecular species.
R. Lemus. Mol. Phys. 101 2511 (2003).
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The 2D limit of the Vibron Model: bending vibrations

The U(3) Lie algebra applied to the study of 2D systems (benders).

F. Iachello and S. Oss. J. Chem. Phys. 104 6956 (1996).
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Molecular Spectroscopy: Water

Example: H2O, X̃ electronic state, C2v symmetry

Modern spectroscopy techniques allow the precise measurement of

highly-excited rovibrational molecular states (approx. 105 experimental

term energies).

Rotational excitation: asymmetric rotor

H2O: JKAKC
, 101 = 23.79 cm−1, 110 = 42.37 cm−1

→ Erot ' 10 cm−1 ' 0.0012 eV

Vibrational excitation, water normal modes

H2O, stretching: A symm. ν1 = 3657.053 cm−1;
B symm. ν3 = 3755.029 cm−1 → Estr ' 0.4 eV

H2O, bending: A symm. ν2 = 1594.746 cm−1 → Ebend ' 0.1 eV
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Molecular bending vibrations

Bending Vibrations

Different experimental techniques to access
different energy scales involved.

Many experimental energy levels.

Experimental errors ≤ 1/1000.

Highly-excited bending overtones at reach.
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The 2D Limit of the Vibron Model (2DVM)

The 2D limit of the vibron model is the simplest two-level model
which still retains a non-trivial angular momentum quantum
number.

It has been successfully applied to the modeling of the bending
vibrational dynamics of several molecular species.

F. Iachello and S. Oss. J. Chem. Phys. 104 6956 (1996)
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The 2D limit of the vibron model (2DVM)

Boson Operators: {τ †i , τi , σ†, σ}; i = x , y[
τi , τ

†
j

]
= δi ,j ; i , j = x , y

[
σ, σ†

]
= 1

Circular Bosons

τ †± = ∓τ
†
x ± iτ †y√

2
, τ± = ∓τx ∓ iτy√

2

Generators of the U(3) SGA

{n̂, n̂s , ˆ̀, Q̂±, R̂±, D̂±}

FPB and F. Iachello. Phys. Rev. A77 032115 (2008)
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2DVM Dynamical Symmetries and Hamiltonian

Dynamical Symmetries

U(3) ⊃ U(2) ⊃ SO(2) Dyn. Symmetry (I)
N n `

U(3) ⊃ SO(3) ⊃ SO(2) Dyn. Symmetry (II)
N w `

U(2) Ĉ1[U(2)] = n̂ Ĉ2[U(2)] = n̂(n̂ + 1)

SO(3) Ĉ2[SO(3)] = Ŵ 2 = D̂+D̂−+D̂−D̂+

2 + ˆ̀2

SO(2) Ĉ1[SO(2)] = ˆ̀ Ĉ2[SO(2)] = ˆ̀2

General one- and two-body Hamiltonian operator

Ĥ = ε n̂ + α n̂(n̂ + 1) + β ˆ̀2 + AŴ 2
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Ĥ = ε n̂ + α n̂(n̂ + 1) + β ˆ̀2 + AŴ 2
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2DVM Casimir Operator Matrix Elements: Chain I

〈[N]; nl
2|n̂|[N]; nl

1〉 =n1 δn2,n1

〈[N]; nl
2|ˆ̀2|[N]; nl

1〉 =l2 δn2,n1

〈[N]; nl
2|Ŵ 2|[N]; nl

1〉 =
[
(N − n1)(n1 + 2) + (N − n1 + 1)n1 + l2

]
δn2,n1

−
√

(N − n1 + 2)(N − n1 + 1)(n1 + l)(n1 − l) δn2,n1−2

−
√

(N − n1)(N − n1 − 1)(n1 + l + 2)(n1 − l + 2) δn2,n1+2
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2DVM Casimir Operator Matrix Elements: Chain II

〈[N];w l
2|n̂|[N];w l

1〉 =

{
(N − w1) [(w1 − l + 1)2 + (w1 + l + 1)2]

2(2w1 + 1)(2w1 + 3)

+
(N + w1 + 1) [(w1 − l − 1)2 + (w1 − l + 1)2]

2(2w1 + 1)(2w1 − 1)

}
δw2,w1

+

√
(N − w1)(N + w1 + 3)(w1 − l + 1)2(w1 + l + 1)2

(2w1 + 1)(2w1 + 3)2(2w1 + 5)
δw2,w1+2

+

√
(N − w1 + 2)(N + w1 + 3)(w1 − l − 1)2(w1 + l − 1)2

(2w1 − 3)(2w1 + 1)2(2w1 + 1)
δw2,w1−2

(a)s =a(a + 1) . . . (a + s − 1) Pochhammer Symbol

〈[N];w l
2|Ŵ 2|[N];w l

1〉 =w1(w1 + 2)δw2,w1

〈[N];w l
2|ˆ̀2|[N];w l

1〉 =l2δw2,w1
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Cylindrical Oscillator Dynamical Symmetry

U(3) ⊃ U(2) ⊃ SO(2)
[N] n `

n = N,N − 1,N − 2, . . . , 0

` = ±n,±(n − 2), . . . , 1(or 0)
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Displaced Oscillator Dynamical Symmetry

U(3) ⊃ SO(3) ⊃ SO(2)
N ω `

ω = N,N − 2,N − 4, . . . , 1(or 0)

` = ±ω,±(ω − 1), . . . , 0

v =
N − ω

2
= 0, 1, . . . ,

N − 1

2
(or

N

2
)

` = 0,±1,±2, . . . ,±(N − 2v)
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Correlation Energy Diagram

Ĥ = ε

[
(1− ξ)n̂ +

ξ

N − 1
P̂

]

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders

Conclusions

The U(3) algebraic approach
Comparison with experimental data

Spectroscopig Signatures: Birge-Sponer Plot

R. N. Dixon Trans. Faraday Soc. 60 1363 (1964).
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Spectroscopig Signatures: Quantum Monodromy Plot
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ESQPT in the 2DVM

M.A. Caprio, P. Cejnar, F. Iachello. Ann. Phys. 323 1106 (2008).
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Application to Single Bender Molecular Species

D. Larese and F. Iachello. J. Mol. Struct. 1006 611 (2011).

D. Larese, FPB, and F. Iachello. J. Mol. Struct. 1051 310 (2013).
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Dynamical Symmetry (I): HCN

(a) Birge-Sponer Plot

(b) Monodromy Plot

(c) Bending Potential

(d) Molecule Model

N = 40

ε = 794.88

α = −3.96

β = 4.25

A = 0.36

rms = 0.7 cm−1
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Dynamical Symmetry (II): H2S

(a) Birge-Sponer Plot

(b) Monodromy Plot

(c) Bending Potential

(d) Molecule Model

N = 140

ε = −−
α = −−
β = 12.10

A = 2.12

rms = 5.9 cm−1
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Quasilinear Species: MgOD

(a) Birge-Sponer Plot

(b) Monodromy Plot

(c) Bending Potential

(d) Molecule Model

N = 27

ε = 299.4

α = −2.1

β = −−
A = 2.7

rms = 4.2 cm−1
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Nonrigid Species: H2O

(a) Birge-Sponer Plot

(b) Monodromy Plot

(c) Bending Potential

(d) Molecule Model

N = 143

ε = 4815.0

α = −32.15

β = 15.44

A = 8.70

A3 = 2.07× 10−5

rms = 9.1 cm−1
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Simple Concepts on Classical Phase Transitions

Phase and Phase Transition

Phase state of matter that is uniform throughout, both in
its chemical composition and its physical properties

Phase Transition marked by an abrupt change in one or more
properties of the system

Most stable phase is the one with the lowest thermodynamical
potential (Φ) which is a function of variable parameters
(F(T,V), F(T,B); G(T,p), G(T,M)).

Φ is analogous to the potential energy, V(x), of a particle:
systems like minimum energy states, in potential minima.
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Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders

Conclusions

Quantum Phase Transitions
QPTs in the 2DVM

Simple Concepts on Classical Phase Transitions

Phase and Phase Transition

Phase state of matter that is uniform throughout, both in
its chemical composition and its physical properties

Phase Transition marked by an abrupt change in one or more
properties of the system

Most stable phase is the one with the lowest thermodynamical
potential (Φ) which is a function of variable parameters
(F(T,V), F(T,B); G(T,p), G(T,M)).

Φ is analogous to the potential energy, V(x), of a particle:
systems like minimum energy states, in potential minima.
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Transition Parameters and Classification

Control and Order Parameters

Control Parameters parameters of the thermodynamical potential
Φ that can be changed arbitrarily and smoothly (e.g.
T, p, external B).

Order Parameters observables that are changing as the control
parameters are varied. Typically they are zero in one
phase and different from zero in the other one.

Classification

First Order Involve latent heat.

Continuous Does not involve latent heat.
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Quantum Phase Transitions

Let’s consider a system that is composed by two parts, having each
one a different symmetry: G1 and G2.

QPT occurs at some critical value (xc) of the control parameter x ,
that controls an interaction strength in the system’s Hamiltonian
H(x), is varied.

Ĥ = x Ĥ1 + (1− x) Ĥ2

At the critical point:

1 The ground state energy E0 is nonanalytic.

2 The gap ∆ between the first excited state and the ground
state vanishes.
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QPT Critical Point
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Energy Surfaces

First order transitions (blue) and Continuous transitions (red)
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Shape Phase Transitions

Ground State Quantum Phase Transitions

Singularities in the evolution of the system’s ground state
properties (shape phase transitions) as a control parameter is
varied (aka zero-temperature phase transitions).

P. Cejnar and J. Jolie. Prog. Part. Nucl. Phys. 62 210 (2009)

P. Cejnar, J. Jolie and R. Casten. Rev. Mod. Phys. 82 2155 (2010)

Shape phase transitions strictly take place at the thermodynamic
limit (large N): importance of precursors for mesoscopic systems
and the scaling behavior of the relevant quantities.
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Shape Phase Transitions

Excited State Quantum Phase Transitions

Is this behavior extensible to states throughout the excitation
spectrum? Yes
ESQPT are universal to two-level pairing many-body models for
both bosonic and fermionic constituents.
M.A. Caprio, P. Cejnar, F. Iachello. Ann. Phys. 323 1106 (2008).

Shape phase transitions strictly take place at the thermodynamic
limit (large N): importance of precursors for mesoscopic systems
and the scaling behavior of the relevant quantities.
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Intrinsic state: connection with the classical limit

|i .s.〉 = |[N]; r , θ〉 =
1√
N!

(
b†c

)N
|0〉

b†c =
1√

1 + r 2

[
σ† + xτ†x + yτ†y

]

Model Hamiltonian and Energy per Particle

Ĥ = ε

[
(1− ξ)n̂ +

ξ

N − 1
P̂

]
Eξ(r) =

〈[N]; r , θ|Ĥ|[N]; r , θ〉
εN

=

[
(1− ξ)

r2

1 + r2
+ ξ

(
1− r2

1 + r2

)2
]
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Ground State Energy

Eξ(r) = ε

[
(1− ξ)

r2

1 + r2
+ ξ

(
1− r2

1 + r2

)2
]
,

re = 0 ,

√
5ξ − 1

3ξ + 1
,

Eξ(re) =

{
ξ 0 ≤ ξ ≤ ξc

−9ξ2+10ξ−1
16ξ ξc < ξ ≤ 1

,

d2Eξ(re)

dξ2
=

{
0 0 ≤ ξ ≤ ξc
− 1

8ξ3 ξc < ξ ≤ 1
.
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U(3) ⊃ SO(3) ⊃ SO(2) Dynamical Symmetry (II)

Single Bender Model Hamiltonian

Ĥ = ε

[
(1− ξ)n̂ +

ξ

N − 1
P̂

]
ε: energy scale

ξ: control parameter: ξ ∈ [0, 1]

ξ = 0.0 rigidly-linear
0.0 < ξ ≤ 0.2 quasilinear
0.2 < ξ < 1.0 non-rigid

ξ = 1.0 rigidly-bent

The system undergoes a
second order QPT in
ξc = 0.2.
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Algebraic approach to coupled benders

Two coupled benders dyn. algebra: U1(3)× U2(3):

σj , τ †j,± = ∓
τ †j,x ± iτ †j,y√

2
, j = 1, 2.

SO1(2)⊗ SO2(2) (Ia)
/ \

U1(3)⊗ U2(3) ⊃ U1(2)⊗ U2(2) SO12(2),
\ /

U12(2) (Ib)

SO1(2)⊗ SO2(2) (IIa)
/ \

U1(3)⊗ U2(3) ⊃ SO1(3)⊗ SO2(3) SO12(2),
\ /

SO12(3) (IIb)

U12(2) (IIIa)
/ \

U1(3)⊗ U2(3) ⊃ U12(3) SO12(2),
\ /

SO12(3) (IIIb)

F. Iachello and S. Oss, J. Chem. Phys. 104 6956 (1996).
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Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders

Conclusions

The coupled 2DVM model
Coupled benders classical limit and phase diagram
Symmetry adapted basis and correlation energy diagram
Fit to Formaldehyde (CH2O) experimental data

Algebraic approach to coupled benders

Two coupled benders dyn. algebra: U1(3)× U2(3):

σj , τ †j,± = ∓
τ †j,x ± iτ †j,y√

2
, j = 1, 2.

SO1(2)⊗ SO2(2) (Ia)
/ \

U1(3)⊗ U2(3) ⊃ U1(2)⊗ U2(2) SO12(2),
\ /

U12(2) (Ib)

SO1(2)⊗ SO2(2) (IIa)
/ \

U1(3)⊗ U2(3) ⊃ SO1(3)⊗ SO2(3) SO12(2),
\ /

SO12(3) (IIb)

U12(2) (IIIa)
/ \

U1(3)⊗ U2(3) ⊃ U12(3) SO12(2),
\ /

SO12(3) (IIIb)

F. Iachello and S. Oss, J. Chem. Phys. 104 6956 (1996).Curro Pérez Bernal FISIMAT 2015 // The Vibron Model
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Block Dimensions in the Coupled Benders Hamiltonian

The two-fluid model implies a huge increase in Hamiltonian block

dimensions.

Curro Pérez Bernal FISIMAT 2015 // The Vibron Model



Introduction
Single Bender Modeling: The 2D Vibron Model

QPT and ESQPT for a Single Bender
Algebraic Approach to Coupled Benders

Conclusions

The coupled 2DVM model
Coupled benders classical limit and phase diagram
Symmetry adapted basis and correlation energy diagram
Fit to Formaldehyde (CH2O) experimental data

Block Dimensions in the Coupled Benders Hamiltonian

The two-fluid model implies a huge increase in Hamiltonian block

dimensions.
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Coupled Benders Hamiltonian (ABBA molecules)

General Hamiltonian (9 parameters)

Ĥ =E ′0 + ε (n̂1 + n̂2) + α [n̂1(n̂1 + 1) + n̂2(n̂2 + 1)] + α12n̂1n̂2

+ λ(D̂1 · D̂2 + R̂1 · R̂2) + B Q̂1 · Q̂2 + A(Ŵ 2
1 + W 2

2 ) + A12Ŵ1 · Ŵ2

+ β(ˆ̀2
1 + ˆ̀2

2) + β12
ˆ̀

1
ˆ̀

2

Model Hamiltonian (3 control parameters: 0 ≤ ξ ≤ 1, η1, and η2 < 0)

Ĥ = ε

{
(1− ξ)

[
n̂1 + n̂2 +

η1

N
Q̂1 · Q̂2

]
+
ξ

N

[
P̂1 + P̂2 + 2η2 Ŵ1 · Ŵ2

]}
Rigidly-bent molecular species (4 parameters: λ, A, A12 and τ)

Ĥ = E ′0 + λ(D̂1 · D̂2 + R̂1 · R̂2) + A(Ŵ 2
1 + Ŵ 2

2 ) + A12Ŵ1 · Ŵ2 + τ(ˆ̀
1 − ˆ̀

2)2

F. Iachello and FPB, Mol. Phys. 106 223 (2008); F. Iachello and FPB, J. Phys. Chem. A 113 13273 (2009);

FPB and L. Fortunato, Phys. Lett. A 376 236 (2012); D. Larese et al., J. Chem. Phys. 140, 014304 (2014)
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1 − ˆ̀

2)2

F. Iachello and FPB, Mol. Phys. 106 223 (2008); F. Iachello and FPB, J. Phys. Chem. A 113 13273 (2009);

FPB and L. Fortunato, Phys. Lett. A 376 236 (2012); D. Larese et al., J. Chem. Phys. 140, 014304 (2014)
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Ĥ = ε

{
(1− ξ)

[
n̂1 + n̂2 +

η1

N
Q̂1 · Q̂2

]
+
ξ

N

[
P̂1 + P̂2 + 2η2 Ŵ1 · Ŵ2
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Projective coherent states (coupled case)

We define the intrinsic state and the boson condensate as

|[N1][N2]; r1, θ1; r2, θ2〉 =
1√

N1!N2!

(
b†c,1

)N1
(
b†c,2

)N2

|0〉

b†c,i =
1√

1 + r2

[
σ†i +

(
xiτ
†
i,x + yiτ

†
i,y

)]

where (ri , θi ) are associated to the bending

angles.
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Geometrical interpretation of r1 and r2. Planar case.

The r1 and r2 parameters are related to the angles measuring the

deviation from linearity and thus they are finite and can take positive or

negative values.
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Coupled Benders Model Hamiltonian Energy Functional

Ĥ =ε

{
(1− ξ)

[
n̂1 + n̂2 +

η1

N
Q̂1 · Q̂2

]
+
ξ

N

[
P̂1 + P̂2 + 2η2 Ŵ1 · Ŵ2

]}
E(r1, r2, φ) =(1− ξ)

[
1

2

2∑
i=1

r 2
i

1 + r 2
i

+
η1

4

(
2∏

i=1

r 2
i

1 + r 2
i

)
cos (2φ)

]

+ ξ

[
1

4

2∑
i=1

(
1− r 2

i

1 + r 2
i

)2

+ 2 η2

(
2∏

i=1

ri
1 + r 2

i

)
cos (φ)

]

Linear, D∞h

r1 = r2 = 0

(C2H2, X̃)

Cis, C2v

r1r2 > 0, φ = 0

(C2H2, cis-Ã)

Trans, C2h

r1r2 < 0, φ = 0
(C2H2, trans-Ã)

Non-planar, C2

r1 = r2 6= 0
0 < φ ≤ π

2
(H2O2)
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Non-planar, C2

r1 = r2 6= 0
0 < φ ≤ π

2
(H2O2)
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The symmetry adapted basis is built through diagonalization of a
CSCO, in particular OCSCO = 3C2x + σxz .
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Schematic spectrum for a Cis molecular species
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Correlation energy diagram: from linear to trans
configuration
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Ĥ/ε = (1 − ξ)ε0
(
n̂1 + n̂2

)
+ ξ

A0
P̂1 + P̂2

N

+ 2η20
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Formaldehyde normal modes of vibration

Point group symmetry C2v

3N − 6 = 6 non-degenerate normal modes of vibration.
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Fit to formaldehyde bending spectrum
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Concluding Remarks

Take-home message: algebraic methods based on symmetry
considerations are a powerful tool for the modeling of many physical
systems, in particular molecular structure.

Molecular spectroscopy can access highly–excited states giving
experimental evidence for QPTs and ESQPTs.

Coupled systems display a rich gamut of interesting physical
situations where the phase transition formalism can thrive.

Many interesting open questions and problems: experimental study
of QPT and ESQPT, ESQPT in coupled systems, normal-local
transitions in benders, continuum effects in algebraic models,
endohedral systems, lattice systems...

Thanks for your kind attention...
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