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1 Introduction. Multi-phase/multi-constituent prob-
lems. Order parameter.
e Bi-phasic. Order parameter ¢ : @ C RY — R. Ex. ¢ = —1 (Solid), ¢ = 1 (Liquid).
Effects: solidification front, dendritic formation

e Two immiscible fluids. Ex. ¢ = —1 (oil) and ¢ = 1 (water).

Effects: coarsening, merging,...

e Alloys of two-materials.
Ex. (Al-Cu). ¢ =0 Al, ¢ =1 Cu (¢ = volume fraction of Cu).

If po (resp. pe) is the Al mass density (resp.Cu), then the alloys mass density can
be modeled by

p=(1—9¢)pa+ dpc

Effects: patters formation, ...

2 Static problem. Minima of Ginzburg-Landau free-

energy
e Ginzburg-Landau Free-energy:
3 5 1 1 9
E@)=5 [ IVoI"+— | F(¢), F(¢)=-((1+¢)(1—9))
2 QO € Jo 4
F(¢) double-well potential. € ~ interface width. 2 C RY a bounded domain.

e Static problem (non-convex minimum problem, under BCs giving contact conditions

with a solid container):
min&(¢p) s.t. Plaa, = ¢p

e Optimality system:



e (Elliptic) boundary problem:

PDE A+ IF(8) =0 QO
19

B(C's Ploa, = ¢p, €V - nlsa, = 0.

e RK: A continuum of solutions (with the same energy) could exits.

Ex. If Q is a disk, the problem
_A¢ + ¢3 = )‘¢ Qa ¢|89 = 07

has a continuum of sols when A > 0 is large enough [A. Haraux '91]

Dissipative dynamical problems, non-conserved (Allen-

Cahn) o conservative (Cahn-Hilliard)

e Allen-Cahn (maximum principle):

0y + M%(qﬁ) =0, +IC: ¢li=0 =¢9, +BCs

e Cahn-Hilliard (conservative):

0y p+V- (MV%(QS)) =0 +I/C +BCs+ Conservative BC: MV%(gb)'n o 0

e Dissipative initial-boundary problems, based on the energy’s law:

(L) CE(0) + (1) =0

where D(t) is the physical dissipativity:
3 ?

P [ |5

e Lemma 1 For any ¢y € X,

o0&

2
(Allen-Cahn), D(t):/QM‘V%

(o(1))

(o(1))

(Cahn-Hilliard).

+oo

E(o(t)) < E(o), D(t)dt < +oo

In particular, since E(p) is bounded from below,

t+1
E(o(t) 4 €x €R, / D(s)ds — 0, ast?T +oo



Well-posedness of initial-boundary problem:

Theorem 2 There ezists a unique global in time (bounded) solution
le@)llx ¥t € (0,+00)

where X = HY(Q).

Convergence towards an equilibrium. Stability of

local minima.
Task: Large time behavior.
Dynamical system: ¢y € X — ¢(t) € X (X = HY(Q))
w-limit set (or equilibrium):

wW(po) = {Poo € X : F(tn) T +00 s.t. d(tn) = oo in X}
Critical points of the free-energy:

C:{?beX : —(¢>=0}

Stationary solutions:

Sac=C, Scm = {56 X : V. (MV%(&)) :0}

Remark: Syc C Scg. In fact, we will see that Scy C Sac
(X, ¢(t)) is a gradient system, because E(¢(t)) is a Lyapunov function, i.e.:

— E(¢(t)) decreases (along trajectories ¢(t))

— If E(p(t)) = E(o(t')) for some t < ', then ¢(t) is a stationary solut.
Remark: A gradient system cannot have (nonconstant) periodic trajectories nor can
have (noncostant) homoclinic trajectories. A gradient system can have heteroclinic
trajectories.
Lemma 3 w(¢g) is nonempty, and w(py) C C (with the same energy Ex ).

Comments:



1. This Lemma admits a specific proof based only in the energy law, without prov-
ing that the dynamical system has relatively compact orbits in X [Petzeltova-

Rocca-Schimperna ’13].

2. If the set of equilibria w(¢pg) be discrete, then any trajectory converges to an

equilibrium.

3. If this is not the case, then there are PDE with F(¢) € C'™ but not analytic,
with sols. whose w-limit set w(¢y) is a continuum of equilibria [P. Polacik &
F. Simondon’02].

4. It cannot happen for 1D domains [H. Matano 78]

e Theorem 4 (Convergence towards an equilibrium) For any ¢q, there ezists
a unique ¢oo € C 8.t P(t) = doo (Voo depends on ¢g). Moreover, the following

convergence rate holds

1
[9(t) = ool < Cma 0 € (0,1/2].

If 0 = 1/2 then the convergence rate is exponential. This happens, for instance, if

Do 15 150lated.

e The proof is based on:

Lemma 5 (Lojasiewicz-Simon inequality) Let ¢ € C. There exist constants
C,6 >0 and 0 € (0,1/2] s.t., for any ¢ € X with ||¢ — ¢|| < 9, it holds

o) - @1 <o)

e Theorem 6 (Stability of local minima) If ¢ is a (local) minimum of £(¢), then
¢ is (locally) stable, but not asymptotically stable in general (i.e., |p(t) — ¢|| << for
all t >0 and ¢(t) = boo, but oo # ¢ in general).

In particular, if ¢ is isolated then ¢ is asymptotically stable (¢(t) — ¢).

Energy-stable time-schemes. Time adaptivity.

e For simplicity, we reduce to the Allen-Cahn problem.

e Fx. Unconditional solvable and energy-stable Implicit-Explicit first-order time-

scheme [Eyre’99):



Convex-concave decomposition: F(¢) = F.(¢) + Fu(¢), s.t. F/ > 0 (convex) and
F” <0 (concave)
Given ¢" ~ ¢(1"), compute ¢"*! as:

¢n+1 ¢n

n+1 /(¢ an+1 1any nt1
Mo dr — A¢"T + FL(¢"T) + Fl(¢") =0, +BCson ¢

Lemma 7 (Local discrete energy law) It holds

n. E(™h) = E(9") Pl — |
ELT = dt +/Q M| am

In particular, E(¢" ) is a discrete Lyapunov functional, because
— the discrete energy decreases: E(¢"T) < E(P").

— IfE(¢""1) = E(¢") then ¢"+1 = ¢ in Q.

Remark: This scheme can be seen as an implicit-explicit descent method, based on

the time dynamic.

Theorem 8 (Long-time convergence) There exits ¢ € C s.t. ¢" — ¢ as
n T +oo.

Open question: Do the limits of continuum and discrete problems coincide as dt" —
07

Some extensions:

— energy stable linear time-scheme

— second-order time-schemes

Time adaptivity: Given dt", to compute ¢"! and EL" (energy law approximation

criterium).

— If |[EL"| << then ¢"! is valid and di" can increase.

— If |[EL"| >> then ¢""! is not valid and dt" must decrease.



Space Finite-Element (FE) approximation. Mesh
adaptation
Discrete approximation of the variational formulation of time-discrete problem.

Mesh adaptation criterium, refining where local spatial variation of ¢™ be large.

Bi-parametric test problem in a wedge geometry:;

angle and contact parameter.

Physical problem: liquid-gas phase-transitions in contact with a surface I' (with a
coin).
Order parameter: ¢ = —1 (gas), ¢ = 1 (liquid)

2D domain, surface with acute angle a € (0,7/2).

Contact parameter ¢, € (0,1) s.t. @|surface = @5 (enforcing that some liquid remains

near of the surface).

PICTURES (domain and BCs)

Task: To detect numerically locally stable interfaces in the liquid-gas phase-transitions

wrt. a and ¢,.
Physical arguments for an (infinite) surface say that:

— If a << then there exists only one stable interface in contact with the surface.
— If @ >> then there exists two stable interfaces in contact with the surface for
a determined range of ¢
Question:
How is the transition between these two possibilities 7 (Physics)

Is there bifurcation ? (Mathematics)



8 Numerical simulations of liquid-vapor phase-transitions
in a wedge geometry. Bifurcations ?
e PICTURES: equilibrium interfaces,
e GRAPHICS: energy vs. ¢

e Conclusion: There is bifurcation starting from o = 15° approx. and ¢4 near of a

critical value ¢}



