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1 Introduction. Multi-phase/multi-constituent prob-

lems. Order parameter.

• Bi-phasic. Order parameter φ : Ω ⊂ IRN → IR. Ex. φ = −1 (Solid), φ = 1 (Liquid).

Effects: solidification front, dendritic formation

• Two immiscible fluids. Ex. φ = −1 (oil) and φ = 1 (water).

Effects: coarsening, merging,...

• Alloys of two-materials.

Ex. (Al-Cu). φ = 0 Al, φ = 1 Cu (φ ≡ volume fraction of Cu).

If ρa (resp. ρc) is the Al mass density (resp.Cu), then the alloys mass density can

be modeled by

ρ = (1− φ)ρa + φρc

Effects: patters formation, ...

2 Static problem. Minima of Ginzburg-Landau free-

energy

• Ginzburg-Landau Free-energy:

E(φ) =
ε

2

∫
Ω

|∇φ|2 +
1

ε

∫
Ω

F (φ), F (φ) =
1

4
((1 + φ)(1− φ))2

F (φ) double-well potential. ε ∼ interface width. Ω ⊂ IRN a bounded domain.

• Static problem (non-convex minimum problem, under BCs giving contact conditions

with a solid container):

min E(φ) s.t. φ|∂ΩD
= φD

• Optimality system: 〈
δE
δφ

(φ), φ

〉
= 0 ∀φ s.t. φ|∂ΩD

= 0.
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• (Elliptic) boundary problem:

PDE −ε∆φ+
1

ε
F ′(φ) = 0 Ω,

BCs φ|∂ΩD
= φD, ε∇φ · n|∂ΩN

= 0.

• RK: A continuum of solutions (with the same energy) could exits.

Ex. If Ω is a disk, the problem

−∆φ+ φ3 = λφ Ω, φ|∂Ω = 0,

has a continuum of sols when λ > 0 is large enough [A. Haraux ’91]

3 Dissipative dynamical problems, non-conserved (Allen-

Cahn) o conservative (Cahn-Hilliard)

• Allen-Cahn (maximum principle):

∂tφ+M
δE
δφ

(φ) = 0, +IC : φ|t=0 = φ0, +BCs

• Cahn-Hilliard (conservative):

∂tφ+∇·
(
M∇δE

δφ
(φ)

)
= 0 +IC +BCs+ Conservative BC: M∇δE

δφ
(φ)·n

∣∣∣
∂Ω

= 0.

• Dissipative initial-boundary problems, based on the energy’s law:

(EL)
d

dt
E(φ(t)) +D(t) = 0

where D(t) is the physical dissipativity:

D(t) =

∫
Ω

∣∣∣∣δEδφ (φ(t))

∣∣∣∣2 (Allen-Cahn), D(t) =

∫
Ω

M

∣∣∣∣∇δEδφ (φ(t))

∣∣∣∣2 (Cahn-Hilliard).

• Lemma 1 For any φ0 ∈ X,

E(φ(t)) ≤ E(φ0),

∫ +∞

0

D(t)dt < +∞

In particular, since E(φ) is bounded from below,

E(φ(t)) ↓ E∞ ∈ IR,

∫ t+1

t

D(s)ds→ 0, as t ↑ +∞
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• Well-posedness of initial-boundary problem:

Theorem 2 There exists a unique global in time (bounded) solution

‖φ(t)‖X ∀ t ∈ (0,+∞)

where X = H1(Ω).

4 Convergence towards an equilibrium. Stability of

local minima.

• Task: Large time behavior.

• Dynamical system: φ0 ∈ X → φ(t) ∈ X (X = H1(Ω))

• ω-limit set (or equilibrium):

ω(φ0) = {φ∞ ∈ X : ∃ (tn) ↑ +∞ s.t. φ(tn)→ φ∞ in X}

• Critical points of the free-energy:

C =

{
φ ∈ X :

δE
δφ

(φ) = 0

}
• Stationary solutions:

SAC = C, SCH =

{
φ ∈ X : ∇ ·

(
M∇δE

δφ
(φ)

)
= 0

}
• Remark: SAC ⊂ SCH . In fact, we will see that SCH ⊂ SAC

• (X,φ(t)) is a gradient system, because E(φ(t)) is a Lyapunov function, i.e.:

– E(φ(t)) decreases (along trajectories φ(t))

– If E(φ(t)) = E(φ(t′)) for some t < t′, then φ(t) is a stationary solut.

• Remark: A gradient system cannot have (nonconstant) periodic trajectories nor can

have (noncostant) homoclinic trajectories. A gradient system can have heteroclinic

trajectories.

• Lemma 3 ω(φ0) is nonempty, and ω(φ0) ⊂ C (with the same energy E∞).

Comments:
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1. This Lemma admits a specific proof based only in the energy law, without prov-

ing that the dynamical system has relatively compact orbits in X [Petzeltova-

Rocca-Schimperna ’13].

2. If the set of equilibria ω(φ0) be discrete, then any trajectory converges to an

equilibrium.

3. If this is not the case, then there are PDE with F (φ) ∈ C∞ but not analytic,

with sols. whose ω-limit set ω(φ0) is a continuum of equilibria [P. Polacik &

F. Simondon’02].

4. It cannot happen for 1D domains [H. Matano ’78]

• Theorem 4 (Convergence towards an equilibrium) For any φ0, there exists

a unique φ∞ ∈ C s.t. φ(t) → φ∞ (φ∞ depends on φ0). Moreover, the following

convergence rate holds

‖φ(t)− φ∞‖ ≤ C
1

(1 + t)θ/(1−2θ)
, θ ∈ (0, 1/2].

If θ = 1/2 then the convergence rate is exponential. This happens, for instance, if

φ∞ is isolated.

• The proof is based on:

Lemma 5 (Lojasiewicz-Simon inequality) Let φ ∈ C. There exist constants

C, δ > 0 and θ ∈ (0, 1/2] s.t., for any φ ∈ X with ‖φ− φ‖ ≤ δ, it holds

|E(φ)− E(φ)|1−θ ≤ C

∥∥∥∥δEδφ (φ)

∥∥∥∥
• Theorem 6 (Stability of local minima) If φ is a (local) minimum of E(φ), then

φ is (locally) stable, but not asymptotically stable in general (i.e., ‖φ(t)−φ‖ << for

all t ≥ 0 and φ(t)→ φ∞, but φ∞ 6= φ in general).

In particular, if φ is isolated then φ is asymptotically stable (φ(t)→ φ).

5 Energy-stable time-schemes. Time adaptivity.

• For simplicity, we reduce to the Allen-Cahn problem.

• Ex. Unconditional solvable and energy-stable Implicit-Explicit first-order time-

scheme [Eyre’99]:
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• Convex-concave decomposition: F (φ) = Fc(φ) + Fe(φ), s.t. F ′′c ≥ 0 (convex) and

F ′′e ≤ 0 (concave)

• Given φn ∼ φ(tn), compute φn+1 as:

1

M

φn+1 − φn

dtn
−∆φn+1 + F ′c(φ

n+1) + F ′e(φ
n) = 0, +BCs on φn+1

• Lemma 7 (Local discrete energy law) It holds

ELn :=
E(φn+1)− E(φn)

dtn
+

∫
Ω

1

M

∣∣∣∣φn+1 − φn

dtn

∣∣∣∣2 ≤ 0.

In particular, E(φn+1) is a discrete Lyapunov functional, because

– the discrete energy decreases: E(φn+1) ≤ E(φn).

– If E(φn+1) = E(φn) then φn+1 ≡ φn in Ω.

• Remark: This scheme can be seen as an implicit-explicit descent method, based on

the time dynamic.

• Theorem 8 (Long-time convergence) There exits φ∞ ∈ C s.t. φn → φ∞ as

n ↑ +∞.

• Open question: Do the limits of continuum and discrete problems coincide as dtn →
0 ?

• Some extensions:

– energy stable linear time-scheme

– second-order time-schemes

• Time adaptivity: Given dtn, to compute φn+1 and ELn (energy law approximation

criterium).

– If |ELn| << then φn+1 is valid and dtn can increase.

– If |ELn| >> then φn+1 is not valid and dtn must decrease.
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6 Space Finite-Element (FE) approximation. Mesh

adaptation

• Discrete approximation of the variational formulation of time-discrete problem.

• Mesh adaptation criterium, refining where local spatial variation of φn be large.

7 Bi-parametric test problem in a wedge geometry;

angle and contact parameter.

• Physical problem: liquid-gas phase-transitions in contact with a surface Γ (with a

coin).

• Order parameter: φ = −1 (gas), φ = 1 (liquid)

• 2D domain, surface with acute angle α ∈ (0, π/2).

• Contact parameter φs ∈ (0, 1) s.t. φ|surface = φs (enforcing that some liquid remains

near of the surface).

PICTURES (domain and BCs)

• Task: To detect numerically locally stable interfaces in the liquid-gas phase-transitions

wrt. α and φs.

• Physical arguments for an (infinite) surface say that:

– If α << then there exists only one stable interface in contact with the surface.

– If α >> then there exists two stable interfaces in contact with the surface for

a determined range of φs

• Question:

How is the transition between these two possibilities ? (Physics)

Is there bifurcation ? (Mathematics)
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8 Numerical simulations of liquid-vapor phase-transitions

in a wedge geometry. Bifurcations ?

• PICTURES: equilibrium interfaces,

• GRAPHICS: energy vs. φs

• Conclusion: There is bifurcation starting from α = 15o approx. and φs near of a

critical value φ?s
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