Dynamical approximation of equilibrium interfaces in contact with surfaces.

F. GUILLÉN-GONZÁLEZ*,

Física y Matemáticas: dos caras de una misma moneda FISMAT'15, IMUS.

July 6, 2015

Keywords: diffuse interface, double-well potential, Allen-Cahn and Cahn-Hilliard timedynamic, local stability, energy-stable schemes, bifurcation.

Contents

1	Introduction. Multi-phase/multi-constituent problems. Order parame-	
	ter.	2
2	Static problem. Minima of Ginzburg-Landau free-energy	2
3	Dissipative dynamical problems, non-conserved (Allen-Cahn) o conservative (Cahn-Hilliard)	3
4	Convergence towards an equilibrium. Stability of local minima.	4
5	Energy-stable time-schemes. Time adaptivity.	5
6	Space Finite-Element (FE) approximation. Mesh adaptation	7
7	Bi-parametric test problem in a wedge geometry; angle and contact parameter.	7
8	Numerical simulations of liquid-vapor phase-transitions in a wedge ge- ometry. Bifurcations ?	8
	*Dpto. EDAN & IMUS, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain. guillen@us.es	

1 Introduction. Multi-phase/multi-constituent problems. Order parameter.

- Bi-phasic. Order parameter $\phi : \Omega \subset \mathbb{R}^N \to \mathbb{R}$. Ex. $\phi = -1$ (Solid), $\phi = 1$ (Liquid). Effects: solidification front, dendritic formation
- Two immiscible fluids. Ex. $\phi = -1$ (oil) and $\phi = 1$ (water). Effects: coarsening, merging,...
- Alloys of two-materials.

Ex. (Al-Cu). $\phi = 0$ Al, $\phi = 1$ Cu ($\phi \equiv$ volume fraction of Cu).

If ρ_a (resp. ρ_c) is the Al mass density (resp.Cu), then the alloys mass density can be modeled by

$$\rho = (1 - \phi)\rho_a + \phi\rho_c$$

Effects: patters formation, ...

2 Static problem. Minima of Ginzburg-Landau freeenergy

• Ginzburg-Landau Free-energy:

$$\mathcal{E}(\phi) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla \phi|^2 + \frac{1}{\varepsilon} \int_{\Omega} F(\phi), \quad F(\phi) = \frac{1}{4} ((1+\phi)(1-\phi))^2$$

 $F(\phi)$ double-well potential. $\varepsilon \sim$ interface width. $\Omega \subset \mathbb{R}^N$ a bounded domain.

• Static problem (non-convex minimum problem, under BCs giving contact conditions with a solid container):

$$\min \mathcal{E}(\phi) \quad s.t. \quad \phi|_{\partial \Omega_D} = \phi_D$$

• Optimality system:

$$\left\langle \frac{\delta \mathcal{E}}{\delta \phi}(\phi), \overline{\phi} \right\rangle = 0 \quad \forall \overline{\phi} \quad s.t. \quad \overline{\phi}|_{\partial \Omega_D} = 0.$$

• (Elliptic) boundary problem:

$$PDE \qquad \qquad -\varepsilon\Delta\phi + \frac{1}{\varepsilon}F'(\phi) = 0 \quad \Omega,$$

$$BCs \qquad \phi|_{\partial\Omega_D} = \phi_D, \quad \varepsilon \nabla \phi \cdot \boldsymbol{n}|_{\partial\Omega_N} = 0.$$

RK: A continuum of solutions (with the same energy) could exits.
 Ex. If Ω is a disk, the problem

$$-\Delta\phi + \phi^3 = \lambda\phi \quad \Omega, \quad \phi|_{\partial\Omega} = 0,$$

has a continuum of sols when $\lambda > 0$ is large enough [A. Haraux '91]

3 Dissipative dynamical problems, non-conserved (Allen-Cahn) o conservative (Cahn-Hilliard)

• Allen-Cahn (maximum principle):

$$\partial_t \phi + M \frac{\delta \mathcal{E}}{\delta \phi}(\phi) = 0, \quad +IC: \ \phi|_{t=0} = \phi_0, \quad +BCs$$

• Cahn-Hilliard (conservative):

$$\partial_t \phi + \nabla \cdot \left(M \nabla \frac{\delta \mathcal{E}}{\delta \phi}(\phi) \right) = 0 \quad + IC \quad + BCs + \quad \text{Conservative BC: } M \nabla \frac{\delta \mathcal{E}}{\delta \phi}(\phi) \cdot \boldsymbol{n} \Big|_{\partial \Omega} = 0.$$

• Dissipative initial-boundary problems, based on the energy's law:

(EL)
$$\frac{d}{dt}\mathcal{E}(\phi(t)) + \mathcal{D}(t) = 0$$

where $\mathcal{D}(t)$ is the physical dissipativity:

$$\mathcal{D}(t) = \int_{\Omega} \left| \frac{\delta \mathcal{E}}{\delta \phi}(\phi(t)) \right|^2 \quad \text{(Allen-Cahn)}, \quad \mathcal{D}(t) = \int_{\Omega} M \left| \nabla \frac{\delta \mathcal{E}}{\delta \phi}(\phi(t)) \right|^2 \quad \text{(Cahn-Hilliard)}.$$

• Lemma 1 For any $\phi_0 \in X$,

$$\mathcal{E}(\phi(t)) \le \mathcal{E}(\phi_0), \quad \int_0^{+\infty} \mathcal{D}(t) dt < +\infty$$

In particular, since $\mathcal{E}(\phi)$ is bounded from below,

$$\mathcal{E}(\phi(t)) \downarrow \mathcal{E}_{\infty} \in \mathbb{R}, \quad \int_{t}^{t+1} \mathcal{D}(s) ds \to 0, \quad as \ t \uparrow +\infty$$

• Well-posedness of initial-boundary problem:

Theorem 2 There exists a unique global in time (bounded) solution

$$\|\phi(t)\|_X \quad \forall t \in (0, +\infty)$$

where $X = H^1(\Omega)$.

4 Convergence towards an equilibrium. Stability of local minima.

- Task: Large time behavior.
- Dynamical system: $\phi_0 \in X \to \phi(t) \in X \ (X = H^1(\Omega))$
- ω -limit set (or equilibrium):

$$\omega(\phi_0) = \{ \phi_\infty \in X : \exists (t_n) \uparrow +\infty \ s.t. \ \phi(t_n) \to \phi_\infty \ in \ X \}$$

• Critical points of the free-energy:

$$\mathcal{C} = \left\{ \overline{\phi} \in X : \frac{\delta \mathcal{E}}{\delta \phi}(\overline{\phi}) = 0 \right\}$$

• Stationary solutions:

$$\mathcal{S}_{AC} = \mathcal{C}, \quad \mathcal{S}_{CH} = \left\{ \overline{\phi} \in X : \nabla \cdot \left(M \nabla \frac{\delta \mathcal{E}}{\delta \phi}(\overline{\phi}) \right) = 0 \right\}$$

- Remark: $S_{AC} \subset S_{CH}$. In fact, we will see that $S_{CH} \subset S_{AC}$
- $(X, \phi(t))$ is a gradient system, because $\mathcal{E}(\phi(t))$ is a Lyapunov function, i.e.:
 - $\mathcal{E}(\phi(t))$ decreases (along trajectories $\phi(t)$)
 - If $\mathcal{E}(\phi(t)) = \mathcal{E}(\phi(t'))$ for some t < t', then $\phi(t)$ is a stationary solut.
- Remark: A gradient system cannot have (nonconstant) periodic trajectories nor can have (noncostant) homoclinic trajectories. A gradient system can have heteroclinic trajectories.
- Lemma 3 ω(φ₀) is nonempty, and ω(φ₀) ⊂ C (with the same energy E_∞).
 Comments:

- This Lemma admits a specific proof based only in the energy law, without proving that the dynamical system has relatively compact orbits in X [Petzeltova-Rocca-Schimperna '13].
- 2. If the set of equilibria $\omega(\phi_0)$ be discrete, then any trajectory converges to an equilibrium.
- 3. If this is not the case, then there are PDE with $F(\phi) \in C^{\infty}$ but not analytic, with sols. whose ω -limit set $\omega(\phi_0)$ is a continuum of equilibria [P. Polacik & F. Simondon'02].
- 4. It cannot happen for 1D domains [H. Matano '78]
- Theorem 4 (Convergence towards an equilibrium) For any ϕ_0 , there exists a unique $\phi_{\infty} \in \mathcal{C}$ s.t. $\phi(t) \to \phi_{\infty}$ (ϕ_{∞} depends on ϕ_0). Moreover, the following convergence rate holds

$$\|\phi(t) - \phi_{\infty}\| \le C \frac{1}{(1+t)^{\theta/(1-2\theta)}}, \quad \theta \in (0, 1/2].$$

If $\theta = 1/2$ then the convergence rate is exponential. This happens, for instance, if ϕ_{∞} is isolated.

• The proof is based on:

Lemma 5 (Lojasiewicz-Simon inequality) Let $\overline{\phi} \in C$. There exist constants $C, \delta > 0$ and $\theta \in (0, 1/2]$ s.t., for any $\phi \in X$ with $\|\phi - \overline{\phi}\| \leq \delta$, it holds

$$|\mathcal{E}(\phi) - \mathcal{E}(\overline{\phi})|^{1-\theta} \le C \left\| \frac{\delta \mathcal{E}}{\delta \phi}(\phi) \right\|$$

Theorem 6 (Stability of local minima) If φ is a (local) minimum of E(φ), then φ is (locally) stable, but not asymptotically stable in general (i.e., ||φ(t) - φ|| << for all t ≥ 0 and φ(t) → φ_∞, but φ_∞ ≠ φ in general).

In particular, if $\overline{\phi}$ is isolated then $\overline{\phi}$ is asymptotically stable $(\phi(t) \to \overline{\phi})$.

5 Energy-stable time-schemes. Time adaptivity.

- For simplicity, we reduce to the Allen-Cahn problem.
- Ex. Unconditional solvable and energy-stable Implicit-Explicit first-order timescheme [Eyre'99]:

- Convex-concave decomposition: $F(\phi) = F_c(\phi) + F_e(\phi)$, s.t. $F''_c \ge 0$ (convex) and $F''_e \le 0$ (concave)
- Given $\phi^n \sim \phi(t^n)$, compute ϕ^{n+1} as:

$$\frac{1}{M}\frac{\phi^{n+1} - \phi^n}{dt^n} - \Delta\phi^{n+1} + F'_c(\phi^{n+1}) + F'_e(\phi^n) = 0, \quad +\text{BCs on } \phi^{n+1}$$

• Lemma 7 (Local discrete energy law) It holds

$$EL^{n} := \frac{\mathcal{E}(\phi^{n+1}) - \mathcal{E}(\phi^{n})}{dt^{n}} + \int_{\Omega} \frac{1}{M} \left| \frac{\phi^{n+1} - \phi^{n}}{dt^{n}} \right|^{2} \le 0.$$

In particular, $\mathcal{E}(\phi^{n+1})$ is a discrete Lyapunov functional, because

- the discrete energy decreases: $\mathcal{E}(\phi^{n+1}) \leq \mathcal{E}(\phi^n)$.

- If
$$\mathcal{E}(\phi^{n+1}) = \mathcal{E}(\phi^n)$$
 then $\phi^{n+1} \equiv \phi^n$ in Ω .

- Remark: This scheme can be seen as an implicit-explicit descent method, based on the time dynamic.
- Theorem 8 (Long-time convergence) There exits $\phi^{\infty} \in C$ s.t. $\phi^n \to \phi^{\infty}$ as $n \uparrow +\infty$.
- Open question: Do the limits of continuum and discrete problems coincide as $dt^n \rightarrow 0$?
- Some extensions:
 - energy stable linear time-scheme
 - second-order time-schemes
- Time adaptivity: Given dt^n , to compute ϕ^{n+1} and EL^n (energy law approximation criterium).
 - If $|EL^n| \ll then \phi^{n+1}$ is valid and dt^n can increase.
 - If $|EL^n| >>$ then ϕ^{n+1} is not valid and dt^n must decrease.

6 Space Finite-Element (FE) approximation. Mesh adaptation

- Discrete approximation of the variational formulation of time-discrete problem.
- Mesh adaptation criterium, refining where local spatial variation of ϕ^n be large.

7 Bi-parametric test problem in a wedge geometry; angle and contact parameter.

- Physical problem: liquid-gas phase-transitions in contact with a surface Γ (with a coin).
- Order parameter: $\phi = -1$ (gas), $\phi = 1$ (liquid)
- 2D domain, surface with acute angle $\alpha \in (0, \pi/2)$.
- Contact parameter $\phi_s \in (0, 1)$ s.t. $\phi|_{surface} = \phi_s$ (enforcing that some liquid remains near of the surface).

PICTURES (domain and BCs)

- Task: To detect numerically locally stable interfaces in the liquid-gas phase-transitions wrt. α and ϕ_s .
- Physical arguments for an (infinite) surface say that:
 - If $\alpha \ll$ then there exists only one stable interface in contact with the surface.
 - If $\alpha >>$ then there exists two stable interfaces in contact with the surface for a determined range of ϕ_s
- Question:

How is the transition between these two possibilities ? (Physics)

Is there bifurcation ? (Mathematics)

8 Numerical simulations of liquid-vapor phase-transitions in a wedge geometry. Bifurcations ?

- PICTURES: equilibrium interfaces,
- GRAPHICS: energy vs. ϕ_s
- Conclusion: There is bifurcation starting from $\alpha = 15^{\circ}$ approx. and ϕ_s near of a critical value ϕ_s^{\star}