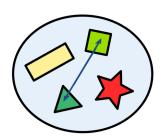
Espacios métricos

R. Álvarez-Nodarse

Universidad de Sevilla

Definiendo la distancia entre los elementos de un conjunto



Un espacio métrico es un par (\mathbb{X}, ρ) donde \mathbb{X} es un conjunto y $\rho := \rho(x, y)$ es una función real (univaluada) no negativa definida para todos $x, y, z \in \mathbb{X}$ tal que

- **3** $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.

Un espacio métrico es un par (X, ρ) donde X es un conjunto y $\rho := \rho(x, y)$ es una función real (univaluada) no negativa definida para todos $x, y, z \in X$ tal que

- **3** $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.

Ejemplo 1: $\mathbb{X} = \mathbb{R}$ o \mathbb{C} con $\rho(x, y) = |x - y|$.

Un espacio métrico es un par (\mathbb{X}, ρ) donde \mathbb{X} es un conjunto y $\rho := \rho(x, y)$ es una función real (univaluada) no negativa definida para todos $x, y, z \in \mathbb{X}$ tal que

- **3** $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.

Ejemplo 1: $\mathbb{X} = \mathbb{R}$ o \mathbb{C} con $\rho(x, y) = |x - y|$.

Ejemplo 2: $\mathbb{X} = \mathbb{R}^n$, i.e., $x = (x_1, x_2, \dots, x_n)$ y definimos la función

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2},$$

obtenemos un espacio métrico (\mathbb{R}, ρ) . Esta métrica se suele denominar métrica euclídea.

3

Un espacio métrico es un par (\mathbb{X}, ρ) donde \mathbb{X} es un conjunto y $\rho := \rho(x, y)$ es una función real (univaluada) no negativa definida para todos $x, y, z \in \mathbb{X}$ tal que

- **3** $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.

Ejemplo 1: $\mathbb{X} = \mathbb{R}$ o \mathbb{C} con $\rho(x, y) = |x - y|$.

Ejemplo 2: $\mathbb{X} = \mathbb{R}^n$, i.e., $x = (x_1, x_2, \dots, x_n)$ y definimos la función

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2},$$

obtenemos un espacio métrico (\mathbb{R}, ρ) . Esta métrica se suele denominar métrica euclídea. ¿Prueba?

Ejemplos menos conocidos

① $\mathbb{X} = \mathbb{R}^n$, i.e., $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}$ con la métrica

$$\rho(x,y) = \left(\sum_{k=1}^{n} |x_k - y_k|^p\right)^{1/p}, \qquad p \ge 1.$$

- **3** $\mathbb{X} = C_{[a,b]} \text{ con } \rho(f,g) = \max_{x \in [a,b]} |f(x) g(x)|.$
- **4** $\mathbb{X} = C_{[a,b]} \text{ con } \rho(f,g) = \left(\int_a^b |f(x) g(x)|^p \right)^{1/p}, \qquad p \ge 1.$
- **5** $\mathbb{X} = I^p$ el espacio de todas las sucesiones numéricas $x = (x_n)_n$ tales que $\sum_{k=1}^{\infty} |x_k|^p < +\infty$ con la métrica

$$\rho(x,y) = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right)^{1/p}, \qquad p \ge 1.$$

⊙ $\mathbb{X} = I^{\infty}$ el espacio de todas las sucesiones numéricas $x = (x_n)_n$ acotadas con la métrica $\rho(x, y) = \sup_{k \in \mathbb{N}} |x_k - y_k|$.

- **1** Espacio métrico *discreto*. Sea $\mathbb X$ un conjunto arbitrario y definamos la métrica *trivial* $\rho(x,y)=1$ si $x\neq y$ y $\rho(x,y)=0$ si x=y.
- ② Sea \mathbb{X} el espacio de todas las sucesiones reales $x = (x_1, x_2, \dots, x_n, \dots)$ y definamos la métrica por

$$\rho(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|x_j - y_j|}{1 + |x_j - y_j|}.$$

 $\ensuremath{\mathfrak{S}}$ Sea un espacio métrico (\mathbb{X}, ρ) cualquiera. Entonces si definimos sobre \mathbb{X} una nueva métrica $\sigma(x,y)$

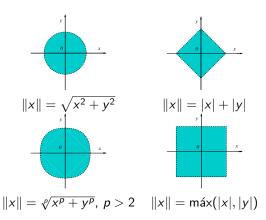
$$\sigma(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)},$$

obtenemos un nuevo espacio métrico (X, σ) .

¿Para qué sirve la métrica?

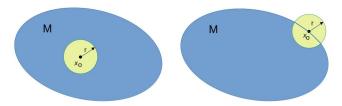
Sea \mathbb{X} un espacio métrico, $x_0 \in \mathbb{X}$ y r > 0. $B(x_0, r)$ es una "bola" si $B(x_0, r) = \{x \in \mathbb{X}; \rho(x_0, x) < r\}$.

Sea $\mathbb X$ un espacio métrico, $x_0 \in \mathbb X$ y r > 0. $B(x_0,r)$ es una "bola" si $B(x_0,r) = \{x \in \mathbb X; \ \rho(x_0,x) < r\}$.



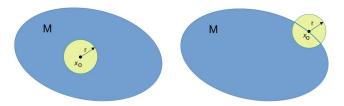
¿Quienes son las bolas del espacio métrico trivial?

- $ightharpoonup x_0 \in \mathbb{X}$ es **punto interior** de $M \subset \mathbb{X}$ si $\exists \epsilon > 0$ tal que $B(x_0, \epsilon) \subset M$.
- $\triangleright x_0 \in \mathbb{X}$ es un punto de la frontera de $M \subset \mathbb{X}$ (no necesariamente $x_0 \in M$) si en cualquier entorno de x_0 hay al mismo tiempo elementos de M y de su complementario $\mathbb{X} \setminus M$ (pudiendo ser, en ambos casos, el propio x_0).



La frontera de M, ∂M , es el conjunto de todos los puntos frontera de M.

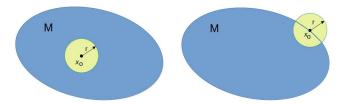
- $ightharpoonup x_0 \in \mathbb{X}$ es **punto interior** de $M \subset \mathbb{X}$ si $\exists \epsilon > 0$ tal que $B(x_0, \epsilon) \subset M$.
- $\triangleright x_0 \in \mathbb{X}$ es un punto de la frontera de $M \subset \mathbb{X}$ (no necesariamente $x_0 \in M$) si en cualquier entorno de x_0 hay al mismo tiempo elementos de M y de su complementario $\mathbb{X} \setminus M$ (pudiendo ser, en ambos casos, el propio x_0).



La frontera de M, ∂M , es el conjunto de todos los puntos frontera de M.

 $ightharpoonup x_0 \in \mathbb{X}$ es un **punto de contacto** (adherente) de M si $\forall \epsilon > 0$ en la bola $B(x, \epsilon)$, hay al menos un $x \in M$.

- $ightharpoonup x_0 \in \mathbb{X}$ es **punto interior** de $M \subset \mathbb{X}$ si $\exists \epsilon > 0$ tal que $B(x_0, \epsilon) \subset M$.
- $\triangleright x_0 \in \mathbb{X}$ es un punto de la frontera de $M \subset \mathbb{X}$ (no necesariamente $x_0 \in M$) si en cualquier entorno de x_0 hay al mismo tiempo elementos de M y de su complementario $\mathbb{X} \setminus M$ (pudiendo ser, en ambos casos, el propio x_0).



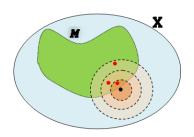
La frontera de M, ∂M , es el conjunto de todos los puntos frontera de M.

 $ightharpoonup x_0 \in \mathbb{X}$ es un **punto de contacto** (adherente) de M si $\forall \epsilon > 0$ en la bola $B(x,\epsilon)$, hay al menos un $x \in M$. \Rightarrow Si $x \in M$ entonces es de contacto.

Definición,

Diremos que x_0 es un punto de límite de $M \subset \mathbb{X}$ si $\forall \epsilon > 0$ en la bola $B(x_0, \epsilon)$, hay al menos un $x \in M$, $x \neq x_0$

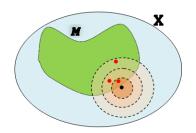
Corolario: $\forall \epsilon > 0$ en cada $B(x, \epsilon)$ hay infinitos elementos de M distintos de x.



Definición

Diremos que x_0 es un punto de límite de $M \subset \mathbb{X}$ si $\forall \epsilon > 0$ en la bola $B(x_0, \epsilon)$, hay al menos un $x \in M$, $x \neq x_0$

Corolario: $\forall \epsilon > 0$ en cada $B(x, \epsilon)$ hay infinitos elementos de M distintos de x.



 $ightharpoonup M\subset \mathbb{X}$ es abierto si todos sus puntos son interiores. M es cerrado si $\mathbb{X}\setminus M$ es abierto.

Sea Σ en conjunto de todos los subconjuntos abiertos de $\mathbb X$. Entonces

- 2 la unión (finita o infinita) de subconjuntos abiertos de $\mathbb X$ es abierto: Si U_k , $k=1,2,\ldots$ son abiertos, $\bigcup_k U_k \in \Sigma$
- **3** La intersección de un número finito de abiertos es abierto: Si U_k , $k=1,2,\ldots,n$ son abiertos, $\bigcap_{k=1}^n U_k \in \Sigma$.

Así, el par, \mathbb{X} , (\mathbb{X}, Σ) , Σ colección de subconjuntos de \mathbb{X} se denomina espacio topológico si Σ cumple con los *axiomas* (propiedades) 1, 2 y 3.

Sea Σ en conjunto de todos los subconjuntos abiertos de $\mathbb X$. Entonces

- 2 la unión (finita o infinita) de subconjuntos abiertos de $\mathbb X$ es abierto: Si U_k , $k=1,2,\ldots$ son abiertos, $\bigcup_k U_k \in \Sigma$
- **3** La intersección de un número finito de abiertos es abierto: Si U_k , k = 1, 2, ..., n son abiertos, $\bigcap_{k=1}^{n} U_k \in \Sigma$.

Así, el par, \mathbb{X} , (\mathbb{X}, Σ) , Σ colección de subconjuntos de \mathbb{X} se denomina espacio topológico si Σ cumple con los *axiomas* (propiedades) 1, 2 y 3.

Proposición

Un conjunto es abierto si y solo si no contiene ningún punto frontera.

Proposición

Un conjunto es cerrado si y solo si contiene todos sus punto frontera.

Un conjunto es cerrado si y solo si contiene a todos sus puntos límites.

Definición

Dado un subconjunto $M \in \mathbb{X}$, se denomina clausura de M al conjunto \overline{M} de los elementos de M y sus puntos de contacto.

Además $\overline{M} = M \cup \{\text{conjunto de sus puntos límites}\}.$

Definición

Un subconjunto $M \subset \mathbb{X}$ es acotado si existe una bola de radio finito que contiene a M, i.e., dado un $x_0 \in \mathbb{X} \exists r > 0$ t.q. $M \subset B(x_0, r)$.

Espacios métricos: Topología

Proposición

Un conjunto es cerrado si y solo si contiene a todos sus puntos límites.

Definición

Dado un subconjunto $M \in \mathbb{X}$, se denomina clausura de M al conjunto \overline{M} de los elementos de M y sus puntos de contacto.

Además $\overline{M} = M \cup \{\text{conjunto de sus puntos límites}\}.$

Definición

Un subconjunto $M \subset \mathbb{X}$ es acotado si existe una bola de radio finito que contiene a M, i.e., dado un $x_0 \in \mathbb{X} \ \exists r > 0$ t.q. $M \subset B(x_0, r)$.

Espacios métricos: Topología

Proposición

Un conjunto es cerrado si y solo si contiene a todos sus puntos límites.

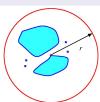
Definición

Dado un subconjunto $M \in \mathbb{X}$, se denomina clausura de M al conjunto \overline{M} de los elementos de M y sus puntos de contacto.

Además $\overline{M} = M \cup \{\text{conjunto de sus puntos límites}\}.$

Definición

Un subconjunto $M \subset \mathbb{X}$ es acotado si existe una bola de radio finito que contiene a M, i.e., dado un $x_0 \in \mathbb{X} \exists r > 0$ t.q. $M \subset B(x_0, r)$.



Un subconjunto $M \subset \mathbb{X}$ es denso en \mathbb{X} si su clausura $\overline{M} = \mathbb{X}$.

¿Esto qué significa?

Espacios métricos separables

Definición

Un subconjunto $M \subset \mathbb{X}$ es denso en \mathbb{X} si su clausura $\overline{M} = \mathbb{X}$.

¿Esto qué significa?

Definición

Un espacio métrico $\mathbb X$ es separable si contiene un subespacio numerable $M\subset \mathbb X$ denso en $\mathbb X$.

Ejemplos: ¿Son separables \mathbb{R}^n , el espacio métrico trivial, I^2 , I^{∞} ?

Un subconjunto $M \subset \mathbb{X}$ es denso en \mathbb{X} si su clausura $\overline{M} = \mathbb{X}$.

¿Esto qué significa?

Definición

Un espacio métrico $\mathbb X$ es separable si contiene un subespacio numerable $M\subset \mathbb X$ denso en $\mathbb X$.

Ejemplos: ¿Son separables \mathbb{R}^n , el espacio métrico trivial, I^2 , I^{∞} ?

 I^2 . Elegimos $Q \subset I^2$ el espacio de las sucesiones $y = (q_1, q_2, \dots, q_n, 0, 0, \dots)$, $\forall n \in \mathbb{N}$, $y \ \forall k, \ q_k \in \mathbb{Q}$. Q es numerable.

$$\rho(x,q)^{2} = \sum_{k=1}^{n} |x_{k} - q_{k}|^{2} + \sum_{k=n+1}^{\infty} |x_{k} - \underbrace{q_{k}}_{=0}|^{2} < \frac{\epsilon^{2}}{2} + \frac{\epsilon^{2}}{2} = \epsilon^{2},$$

R. Álvarez-Nodarse Espacios métricos U. Sevilla

12

$$r: y \mapsto \mathbb{R}, \quad r(y) = y_1/2 + y_2/2^2 + \cdots + y_n/2^n + \cdots$$

r establece una relación biunívoca entre los números reales del intervalo [0,1] y el conjunto de Y de todas las sucesiones de ceros y unos. Como [0,1] no es numerable, Y tampoco lo es.

$$r: y \mapsto \mathbb{R}, \quad r(y) = y_1/2 + y_2/2^2 + \cdots + y_n/2^n + \cdots$$

r establece una relación biunívoca entre los números reales del intervalo [0,1] y el conjunto de Y de todas las sucesiones de ceros y unos. Como [0,1] no es numerable, Y tampoco lo es.

Además $\rho(y, y') = 1$ si $y \neq y'$ y $\rho(y, y') = 0$ si y solo si y = y'.

Sean $B(y,1/3) \ \forall y \in Y$. Las B(y,1/3) son disjuntas y forman un conjunto no numerable de bolas.

$$r: y \mapsto \mathbb{R}, \quad r(y) = y_1/2 + y_2/2^2 + \cdots + y_n/2^n + \cdots$$

r establece una relación biunívoca entre los números reales del intervalo [0,1] y el conjunto de Y de todas las sucesiones de ceros y unos. Como [0,1] no es numerable, Y tampoco lo es.

Además $\rho(y, y') = 1$ si $y \neq y'$ y $\rho(y, y') = 0$ si y solo si y = y'.

Sean $B(y,1/3) \ \forall y \in Y$. Las B(y,1/3) son disjuntas y forman un conjunto no numerable de bolas.

Sea M cualquier conjunto denso en I^{∞} . Entonces en cada B(y,1/3) hay al menos un elemento de M, luego M es no numerable y como M es arbitrario $\Rightarrow I^{\infty}$ no es separable.

Espacios métricos: conjuntos raros

Si M no es denso en \mathbb{X} , entonces $\overline{M} \neq \mathbb{X}$, por lo que \overline{M} dejará sin rellenar algún entorno de \mathbb{X} , i.e., en \mathbb{X} hay entornos que no contienen puntos de \overline{M} .

Si M no es denso en \mathbb{X} , entonces $\overline{M} \neq \mathbb{X}$, por lo que \overline{M} dejará sin rellenar algún entorno de \mathbb{X} , i.e., en \mathbb{X} hay entornos que no contienen puntos de \overline{M} .

Definición

Un conjunto $M \subset \mathbb{X}$ es raro o denso en ninguna parte si su clausura \overline{M} no contiene ningún entorno, i.e., el interior de $\overline{M} = \emptyset$.

En otras palabras, un conjunto M es raro si su clausura \overline{M} no contiene puntos interiores. Ello implica que si M es raro cualquier entorno de $\mathbb X$ contiene una bola que es disjunta de con M.

Si M no es raro, entonces su \overline{M} tiene puntos interiores.

Si M no es denso en \mathbb{X} , entonces $\overline{M} \neq \mathbb{X}$, por lo que \overline{M} dejará sin rellenar algún entorno de \mathbb{X} , i.e., en \mathbb{X} hay entornos que no contienen puntos de \overline{M} .

Definición

Un conjunto $M \subset \mathbb{X}$ es raro o denso en ninguna parte si su clausura \overline{M} no contiene ningún entorno, i.e., el interior de $\overline{M} = \emptyset$.

En otras palabras, un conjunto M es raro si su clausura \overline{M} no contiene puntos interiores. Ello implica que si M es raro cualquier entorno de $\mathbb X$ contiene una bola que es disjunta de con M.

Si M no es raro, entonces su \overline{M} tiene puntos interiores.

A diferencia de los conjuntos no densos en general, los no raros son tales que su clausura tienen que rellenar algún entorno de $\mathbb X$ pero no necesariamente todo el espacio.

Espacios métricos: conjuntos raros

►Si un conjunto cerrado no contiene ningún entorno, entonces es denso en ninguna parte.

- ►Si un conjunto cerrado no contiene ningún entorno, entonces es denso en ninguna parte.
- ▶Sea M un abierto. Entonces $\overline{M} \setminus M$ es raro.

- ▶Si un conjunto cerrado no contiene ningún entorno, entonces es denso en ninguna parte.
- ►Sea M un abierto. Entonces $\overline{M} \setminus M$ es raro.

Un conjunto M $\subset \mathbb{X}$ *es raro si y solo si* $\mathbb{X} \setminus \overline{M}$ *es denso en* \mathbb{X} , *i.e.*, $\overline{\mathbb{X} \setminus \overline{M}} = \mathbb{X}$.

- ▶Si un conjunto cerrado no contiene ningún entorno, entonces es denso en ninguna parte.
- ►Sea M un abierto. Entonces $\overline{M} \setminus M$ es raro.

Un conjunto $M \subset \mathbb{X}$ es raro si y solo si $\mathbb{X} \setminus \overline{M}$ es denso en \mathbb{X} , i.e., $\mathbb{X} \setminus \overline{M} = \mathbb{X}$.

Definición

Un conjunto formado por la unión numerable de conjuntos raros se denomina de primera categoría o magro. Si un conjunto no es de primera categoría, entonces se dice que es de segunda categoría.

Espacios métricos: ejemplos de conjuntos raros

 $ightharpoonup Sea \ \mathbb{X} = \mathbb{R}$ con la métrica habitual de \mathbb{R} . Entonces cualquier conjunto finito de puntos es raro (y por tanto de primera categoría), el conjunto de los números racionales \mathbb{Q} es de primera categoría, el conjunto de los números naturales es de primera categoría.

- $ightharpoonup Sea \ \mathbb{X} = \mathbb{R}$ con la métrica habitual de \mathbb{R} . Entonces cualquier conjunto finito de puntos es raro (y por tanto de primera categoría), el conjunto de los números racionales \mathbb{Q} es de primera categoría, el conjunto de los números naturales es de primera categoría.
- Sea $\Omega=\{1,2,3,\dots\}$ y elijamos la métrica habitual de \mathbb{R} . Es obvio que los entornos (bolas) de Ω de radio menor que 1 son puntos únicos y, por tanto, el único subconjunto de Ω que es denso en ninguna parte es conjunto vacío, es decir, cualquier subconjunto no vacío de Ω es necesariamente de segunda categoría.

- $ightharpoonup Sea \ \mathbb{X} = \mathbb{R}$ con la métrica habitual de \mathbb{R} . Entonces cualquier conjunto finito de puntos es raro (y por tanto de primera categoría), el conjunto de los números racionales \mathbb{Q} es de primera categoría, el conjunto de los números naturales es de primera categoría.
- Sea $\Omega=\{1,2,3,\dots\}$ y elijamos la métrica habitual de \mathbb{R} . Es obvio que los entornos (bolas) de Ω de radio menor que 1 son puntos únicos y, por tanto, el único subconjunto de Ω que es denso en ninguna parte es conjunto vacío, es decir, cualquier subconjunto no vacío de Ω es necesariamente de segunda categoría.
- ►El conjunto vacío \emptyset es denso en ninguna parte, luego es de primera categoría \Rightarrow un conjunto de segunda categoría tiene que tener elementos.

Espacios métricos: Aplicaciones (Operadores)

Definición

Una aplicación es una regla T que le hace corresponder a cada elemento del subconjunto $\mathcal{D}(T) \subset \mathbb{X}$ un único elemento del espacio métrico \mathbb{Y} . Así, $T: \mathbb{X} \mapsto \mathbb{Y}$, y = Tx o y = T(x), donde $x \in \mathcal{D}(T) \subset \mathbb{X}$ e $y \in \mathbb{Y}$. Al conjunto $\mathcal{D}(T) \subset \mathbb{X}$ se le denomina dominio de la aplicación.

Definición

Si a cada $x \in \mathcal{D}(T)$ le corresponde un valor $y = Tx \in \mathbb{Y}$ diremos que Tx es la imagen de x según T. Al conjunto de todas las imágenes Tx le denominaremos imagen de T y le denotaremos por $\mathcal{I}(T)$.

Definición

La imagen inversa de $y \in \mathbb{Y}$ es el conjunto de todas las $x \in \mathcal{D}(T)$ tales que Tx = y. La imagen inversa de un subconjunto $M \subset \mathbb{Y}$ es el conjunto de todas las $x \in \mathcal{D}(T)$ tales que Tx = y para todos $y \in M$.

La imagen inversa de un elemento $y \in \mathbb{Y}$ puede ser el conjunto vacío, un único punto (elemento) de $\mathcal{D}(T)$ o un subconjunto $M \subset \mathcal{D}(T)$.

Una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ se llama sobreyectiva si todo elemento y de \mathbb{Y} es imagen de algún elemento x del dominio, es decir T es tal que

$$\forall y \in \mathbb{Y}, \quad \exists x \in \mathcal{D}(T) \text{ tal que } Tx = y \iff \mathcal{I}(T) \equiv \mathbb{Y}.$$

Definición

Una función se llama inyectiva si todo elemento y de la imagen de T es imagen a lo sumo de uno y sólo un elemento x del dominio. Es decir T: $\mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ es tal que

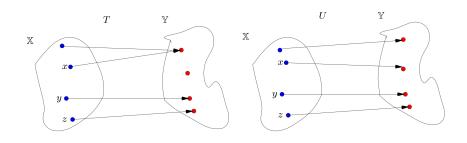
$$\forall y_1, y_2 \in \mathcal{I}(T)$$
, tales que $y_1 = Tx_1 = y_2 = Tx_2$, $\Rightarrow x_1 = x_2$.

O, equivalentemente, si
$$\forall x_1, x_2 \in \mathcal{D}(T)$$
 con $x_1 \neq x_2$, se tiene $Tx_1 \neq Tx_2$.

Es decir una función inyectiva es tal que diferentes puntos tienen diferentes imágenes y por tanto la imagen inversa de cada $y \in \mathcal{I}(T)$ es un único elemento de $\mathcal{D}(T)$.

R. Álvarez-Nodarse Espacios métricos U. Sevilla

18



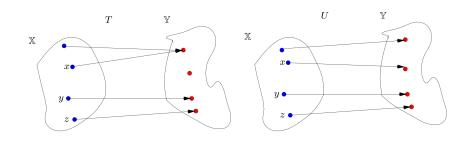
 $T: \mathbb{X} \mapsto \mathbb{Y}$ no es inyectiva y $U: \mathbb{X} \mapsto \mathbb{Y}$ si lo es.

Para las funciones inyectivas se puede definir la aplicación inversa.

Definición

Sea $U:\mathcal{D}(U)\subset\mathbb{X}\mapsto\mathbb{Y}$ una aplicación inyectiva. Definiremos su inversa U^{-1} a la aplicación $U^{-1}:\mathcal{I}(U)\subset\mathbb{Y}\mapsto\mathcal{D}(U)\subset\mathbb{X}$ tal que a cada elemento $y\in\mathcal{I}(U)$ le hace corresponder un único $x\in\mathcal{D}(U)$ tal que Ux=y.

Espacios métricos: Aplicaciones (Operadores)



 $T: \mathbb{X} \mapsto \mathbb{Y}$ no es inyectiva y $U: \mathbb{X} \mapsto \mathbb{Y}$ si lo es.

Para las funciones inyectivas se puede definir la aplicación inversa.

Definición

Sea $U:\mathcal{D}(U)\subset\mathbb{X}\mapsto\mathbb{Y}$ una aplicación inyectiva. Definiremos su inversa U^{-1} a la aplicación $U^{-1}:\mathcal{I}(U)\subset\mathbb{Y}\mapsto\mathcal{D}(U)\subset\mathbb{X}$ tal que a cada elemento $y\in\mathcal{I}(U)$ le hace corresponder un único $x\in\mathcal{D}(U)$ tal que Ux=y.

Composición de aplicaciones ...

La restricción de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $B \subset \mathcal{D}(T)$ es la aplicación $T|_B$ que se obtiene de T cuando x se restringe al conjunto $B \subset \mathcal{D}(T)$.

La extensión de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $C \supset \mathcal{D}(T)$ es la aplicación \widetilde{T} t.q. $\widetilde{T}|_{\mathcal{D}(T)} = T$, i.e., $\widetilde{T}x = Tx \ \forall x \in \mathcal{D}(T)$.

La restricción de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $B \subset \mathcal{D}(T)$ es la aplicación $T|_B$ que se obtiene de T cuando x se restringe al conjunto $B \subset \mathcal{D}(T)$.

La extensión de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $C \supset \mathcal{D}(T)$ es la aplicación \widetilde{T} t.q. $\widetilde{T}|_{\mathcal{D}(T)} = T$, i.e., $\widetilde{T}x = Tx \ \forall x \in \mathcal{D}(T)$.

Definición

 $T:\mathcal{D}(T)\subset\mathbb{X}\mapsto\mathbb{Y}$ es continua en $x_0\in\mathcal{D}(T)$ si

$$\forall \epsilon > 0, \quad \exists \delta > 0 \text{ t.q. } \forall x \in \mathcal{D}(T) \text{ con } \rho_{\mathbb{X}}(x, x_0) < \delta \Rightarrow \rho_{\mathbb{Y}}(Tx, Tx_0) < \epsilon$$

T es continua en todo $M \subset \mathcal{D}(T)$ si T es continua en todo $x \in M$.

Espacios métricos: Aplicaciones (Operadores)

Definición

La restricción de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $B \subset \mathcal{D}(T)$ es la aplicación $T|_B$ que se obtiene de T cuando x se restringe al conjunto $B \subset \mathcal{D}(T)$.

La extensión de una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ a un subconjunto $C \supset \mathcal{D}(T)$ es la aplicación \widetilde{T} t.q. $\widetilde{T}|_{\mathcal{D}(T)} = T$, i.e., $\widetilde{T}x = Tx \ \forall x \in \mathcal{D}(T)$.

Definición

 $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ es continua en $x_0 \in \mathcal{D}(T)$ si

$$\forall \epsilon > 0, \quad \exists \delta > 0 \ t.q. \ \forall x \in \mathcal{D}(T) \ con \ \rho_{\mathbb{X}}(x, x_0) < \delta \Rightarrow \rho_{\mathbb{Y}}(Tx, Tx_0) < \epsilon$$

T es continua en todo $M \subset \mathcal{D}(T)$ si T es continua en todo $x \in M$.

Proposición

Una aplicación $T: \mathcal{D}(T) \subset \mathbb{X} \mapsto \mathbb{Y}$ es continua \Leftrightarrow si la imagen inversa de cualquier abierto (cerrado) de \mathbb{Y} es un abierto (cerrado) de \mathbb{X} .

Una sucesión $(x_n)_n \in \mathbb{X}$ es convergente, $\lim_{n\to\infty} x_n = x$, si $\exists x \in \mathbb{X}$ t.q.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \quad \rho(x, x_n) < \epsilon.$$

En caso contrario diremos que $(x_n)_n$ es divergente.

Una sucesión $(x_n)_n \in \mathbb{X}$ es convergente, $\lim_{n\to\infty} x_n = x$, si $\exists x \in \mathbb{X}$ t.q.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \quad \rho(x, x_n) < \epsilon.$$

En caso contrario diremos que $(x_n)_n$ es divergente.

Ejercicio: Si existe el límite es único.

Una sucesión $(x_n)_n \in \mathbb{X}$ es convergente, $\lim_{n\to\infty} x_n = x$, si $\exists x \in \mathbb{X}$ t.q.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \quad \rho(x, x_n) < \epsilon.$$

En caso contrario diremos que $(x_n)_n$ es divergente.

Ejercicio: Si existe el límite es único.

Ejercicio: La métrica es una aplicación continua: Es decir, si $x_n \to x$ entonces $\rho(x_n, a) \to \rho(x, a)$.

R. Álvarez-Nodarse Espacios métricos U. Sevilla

21

Una sucesión $(x_n)_n \in \mathbb{X}$ es convergente, $\lim_{n\to\infty} x_n = x$, si $\exists x \in \mathbb{X}$ t.q.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \quad \rho(x, x_n) < \epsilon.$$

En caso contrario diremos que $(x_n)_n$ es divergente.

Ejercicio: Si existe el límite es único.

Ejercicio: La métrica es una aplicación continua: Es decir, si $x_n \to x$ entonces $\rho(x_n, a) \to \rho(x, a)$. Si $x_n \stackrel{n \to \infty}{\longrightarrow} x$ e $y_n \stackrel{n \to \infty}{\longrightarrow} y \Rightarrow \lim_{n \to \infty} \rho(x_n, y_n) = \rho(x, y)$. **Ayuda:** Usa que $\rho(x_n, y_n) \le \rho(x_n, x) + \rho(x, y) + \rho(y, y_n)$.

R. Álvarez-Nodarse Espacios métricos U. Sevilla

21

Una sucesión $(x_n)_n \in \mathbb{X}$ es convergente, $\lim_{n\to\infty} x_n = x$, si $\exists x \in \mathbb{X}$ t.q.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \quad \rho(x, x_n) < \epsilon.$$

En caso contrario diremos que $(x_n)_n$ es divergente.

Ejercicio: Si existe el límite es único.

Ejercicio: La métrica es una aplicación continua: Es decir, si $x_n \to x$ entonces $\rho(x_n,a) \to \rho(x,a)$. Si $x_n \stackrel{n \to \infty}{\longrightarrow} x$ e $y_n \stackrel{n \to \infty}{\longrightarrow} y \Rightarrow \text{lím}_{n \to \infty} \rho(x_n,y_n) = \rho(x,y)$. **Ayuda:** Usa que $\rho(x_n,y_n) \le \rho(x_n,x) + \rho(x,y) + \rho(y,y_n)$.

Proposición

Sea $M \subset \mathbb{X}$, $M \neq \emptyset$, y sea \overline{M} su clausura. Entonces

- a) $x \in \overline{M}$ si y sólo si existe una sucesión $(x_n)_n$ de elementos de M (i.e., $\forall n, x_n \in M$) tal que $\lim_{n \to \infty} x_n = x$.
- b) M es cerrado si y sólo si $\lim_{n\to\infty} x_n = x$ implica que $x \in M$.

Espacios métricos: Compacidad

▶Un subconjunto $M \in \mathbb{X}$ es cerrado si y sólo si $M = \overline{M}$. Es decir, un conjunto cerrado es aquel que contiene a todos sus puntos límite $\Rightarrow x \in \overline{M}$ si y sólo si existe una sucesión $(x_n)_n$ de elementos de M tal que lím $_{n\to\infty}x_n=x$.

▶Un subconjunto $M \in \mathbb{X}$ es cerrado si y sólo si M = M. Es decir, un conjunto cerrado es aquel que contiene a todos sus puntos límite $\Rightarrow x \in \overline{M}$ si y sólo si existe una sucesión $(x_n)_n$ de elementos de M tal que lím $_{n\to\infty} x_n = x$.

Definición

Un espacio métrico \mathbb{X} se denomina (secuencialmente) **compacto** si cualquier sucesión $(x_n)_n$ de elementos de \mathbb{X} tiene una subsucesión convergente.

Un subconjunto $M \subset \mathbb{X}$ es compacto si M es compacto por si mismo, i.e., $\forall (x_n)_n$ de M tiene una subsucesión convergente en M.

▶Un subconjunto $M \in \mathbb{X}$ es cerrado si y sólo si $M = \overline{M}$. Es decir, un conjunto cerrado es aquel que contiene a todos sus puntos límite $\Rightarrow x \in \overline{M}$ si y sólo si existe una sucesión $(x_n)_n$ de elementos de M tal que lím $_{n\to\infty} x_n = x$.

Definición

Un espacio métrico \mathbb{X} se denomina (secuencialmente) **compacto** si cualquier sucesión $(x_n)_n$ de elementos de \mathbb{X} tiene una subsucesión convergente.

Un subconjunto $M \subset \mathbb{X}$ es compacto si M es compacto por si mismo, i.e., $\forall (x_n)_n$ de M tiene una subsucesión convergente en M.

Lema

Si $M \subset \mathbb{X}$ es compacto, entonces M es cerrado y acotado.

El recíproco es falso.

Contraejemplo: Sea $\mathbb{X}=l^2$ y sea M el conjunto de los $e_k=\delta_{k,i},\ k=1,2,\ldots$

Contraejemplo: Sea $\mathbb{X} = l^2$ y sea M el conjunto de los $e_k = \delta_{k,i}$, $k = 1, 2, \ldots$

Obviamente $||e_k|| = 1$.

Contraejemplo: Sea $\mathbb{X} = I^2$ y sea M el conjunto de los $e_k = \delta_{k,i}$, $k = 1, 2, \ldots$

Obviamente $||e_k|| = 1$.

Además todos los puntos de M son aislados (¿por qué?), por tanto M es cerrado.

Contraejemplo: Sea $\mathbb{X} = I^2$ y sea M el conjunto de los $e_k = \delta_{k,i}$, $k = 1, 2, \ldots$

Obviamente $||e_k|| = 1$.

Además todos los puntos de M son aislados (¿por qué?), por tanto M es cerrado.

Como M solo tiene puntos aislados, M no tiene ningún punto de acumulación \Rightarrow ninguna sucesión que escojamos de elementos distintos de M contiene una subsucesión convergente.

Una sucesión $(x_n)_n$ de \mathbb{X} se denomina de Cauchy o fundamental si

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \ \forall p \in \mathbb{N}, \quad \rho(x_n, x_{n+p}) < \epsilon$$

Una sucesión $(x_n)_n$ de $\mathbb X$ se denomina de Cauchy o fundamental si

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \ \forall p \in \mathbb{N}, \quad \rho(x_n, x_{n+p}) < \epsilon \quad \Leftrightarrow \quad$$

$$\forall n, m > N, \ \rho(x_n, x_m) < \epsilon$$

Ejercicio: Prueba que una sucesión convergente es de Cauchy.

Una sucesión en \mathbb{R}^n es de Cauchy \Leftrightarrow es convergente. ¿Y en general?

Una sucesión $(x_n)_n$ de $\mathbb X$ se denomina de Cauchy o fundamental si

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \ t.q. \ \forall n > N, \ \forall p \in \mathbb{N}, \quad \rho(x_n, x_{n+p}) < \epsilon \quad \Leftrightarrow \quad$$

$$\forall n, m > N, \ \rho(x_n, x_m) < \epsilon$$

Ejercicio: Prueba que una sucesión convergente es de Cauchy.

Una sucesión en \mathbb{R}^n es de Cauchy \Leftrightarrow es convergente. ¿Y en general?

Definición

Un espacio métrico $\mathbb X$ se denomina completo si y sólo si toda sucesión de Cauchy de elementos de $\mathbb X$ converge.

Teorema

Sea $M \subset X$, X completo. M es completo si y sólo si es cerrado.

Ejercicio: Prueba que el espacio métrico l^2 es completo. ¿Es l^p , $p \ge 1$ completo?

Ejercicio: Prueba que el espacio métrico I^2 es completo. ¿Es I^p , $p \ge 1$ completo?

Ejercicio: Prueba que el espacio $C_{[a,b]}^2$, i.e. $C_{[a,b]}$ con la métrica

$$\rho(f,g) = \sqrt{\int_a^b |f(x) - g(x)|^2 dx}$$

no es completo.

Ejercicio: Prueba que el espacio métrico l^2 es completo. ¿Es l^p , $p \ge 1$ completo?

Ejercicio: Prueba que el espacio $C_{[a,b]}^2$, i.e. $C_{[a,b]}$ con la métrica

$$\rho(f,g) = \sqrt{\int_a^b |f(x) - g(x)|^2 dx}$$

no es completo.

Ejercicio: Probar que el espacio métrico $C_{\infty}([a,b])$, i.e. $C_{[a,b]}$ con la métrica

$$\rho(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

es completo.

Sea sucesión de esferas (bolas cerradas) $(S_n(x_n, r_n))_n$, $S_n(x_n, r_n) \subset \mathbb{X}$, para todo $n \in \mathbb{N}$, tales que

$$S_1(x_1, r_1) \supset S_2(x_2, r_2) \supset \cdots \supset S_n(x_n, r_n) \supset S_{n+1}(x_{n+1}, r_{n+1}) \supset \cdots$$

se denomina sucesión de esferas (cerradas) encajadas.

Teorema (De las esferas encajadas)

Sea X un espacio métrico. X es completo si y sólo si, cualquier sucesión de esferas encajadas cuyos radios tiendan a cero $(r_n \stackrel{n \to \infty}{\longrightarrow} 0)$ tiene intersección no vacía, i.e., $\bigcap_{n=1}^{\infty} S_n(x_n, r_n) \neq \emptyset$.

Ejercicio: Prueba que si \mathbb{X} es completo, entonces la $\bigcap_{n=1}^{\infty} S_n(x_n, r_n)$, con $r_n \to 0$, contiene un único punto. (**Ayuda:** Usa el teorema anterior).

Nota: En el T. de las esferas encajadas se puede cambiar la condición de que los radios tiendan a cero por que las esferas sean compactas pero . . .

R. Álvarez-Nodarse

Sea $T: \mathbb{X} \mapsto \mathbb{Y}$ una aplicación inyectiva del espacio métrico (\mathbb{X}, ρ) al espacio métrico (\mathbb{Y}, σ) . Diremos que T es una isometría si

$$\forall x_1, x_2 \in \mathbb{X}, \qquad \rho(x_1, x_2) = \sigma(Tx_1, Tx_2).$$

Sea $T: \mathbb{X} \mapsto \mathbb{Y}$ una aplicación inyectiva del espacio métrico (\mathbb{X}, ρ) al espacio métrico (\mathbb{Y}, σ) . Diremos que T es una isometría si

$$\forall x_1, x_2 \in \mathbb{X}, \qquad \rho(x_1, x_2) = \sigma(Tx_1, Tx_2).$$

Definición

Sea (\mathbb{X}, ρ) un espacio métrico y sea $(\overline{\mathbb{X}}, \rho)$ su clausura. Llamaremos completamiento de \mathbb{X} al espacio métrico \mathbb{X}^* tal que $\mathbb{X} \subset \mathbb{X}^*$ y $\overline{\mathbb{X}} = \mathbb{X}^*$.

Por ejemplo, \mathbb{R} es el completamiento de \mathbb{Q} .

Sea $T: \mathbb{X} \mapsto \mathbb{Y}$ una aplicación inyectiva del espacio métrico (\mathbb{X}, ρ) al espacio métrico (\mathbb{Y}, σ) . Diremos que T es una isometría si

$$\forall x_1, x_2 \in \mathbb{X}, \qquad \rho(x_1, x_2) = \sigma(Tx_1, Tx_2).$$

Definición

Sea (\mathbb{X}, ρ) un espacio métrico y sea $(\overline{\mathbb{X}}, \rho)$ su clausura. Llamaremos completamiento de \mathbb{X} al espacio métrico \mathbb{X}^* tal que $\mathbb{X} \subset \mathbb{X}^*$ y $\overline{\mathbb{X}} = \mathbb{X}^*$.

Por ejemplo, \mathbb{R} es el completamiento de \mathbb{Q} . ¿Y de (0,1)?

Sea $T: \mathbb{X} \mapsto \mathbb{Y}$ una aplicación inyectiva del espacio métrico (\mathbb{X}, ρ) al espacio métrico (\mathbb{Y}, σ) . Diremos que T es una isometría si

$$\forall x_1, x_2 \in \mathbb{X}, \qquad \rho(x_1, x_2) = \sigma(Tx_1, Tx_2).$$

Definición

Sea (\mathbb{X}, ρ) un espacio métrico y sea $(\overline{\mathbb{X}}, \rho)$ su clausura. Llamaremos completamiento de \mathbb{X} al espacio métrico \mathbb{X}^* tal que $\mathbb{X} \subset \mathbb{X}^*$ y $\overline{\mathbb{X}} = \mathbb{X}^*$.

Por ejemplo, \mathbb{R} es el completamiento de \mathbb{Q} . ¿Y de (0,1)?

Teorema

Todo espacio métrico (\mathbb{X}, ρ) tiene un completamiento. Dicho completamiento es único salvo isometrías. Es decir, si \mathbb{X}^* y \mathbb{X}^{**} son dos completamientos de \mathbb{X} , entonces existe una aplicación $T: \mathbb{X}^* \mapsto \mathbb{X}^{**}$, $x^{**} = Tx^*$ tal que Tx = x para todo $x \in \mathbb{X}$ y $\rho^*(x^*, y^*) = \rho^{**}(Tx^*, Ty^*)$.

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. Si existe un $\alpha \in (0,1)$ tal que

$$\forall x, y \in \mathbb{X} \quad \Rightarrow \quad \rho(Tx, Ty) \leq \alpha \rho(x, y),$$

diremos que T es una aplicación de contracción.

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. Si existe un $\alpha \in (0,1)$ tal que

$$\forall x, y \in \mathbb{X} \quad \Rightarrow \quad \rho(Tx, Ty) \leq \alpha \rho(x, y),$$

diremos que T es una aplicación de contracción.

Ejercicio

Prueba que toda aplicación de contracción es continua.

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. Si existe un $\alpha \in (0,1)$ tal que

$$\forall x, y \in \mathbb{X} \quad \Rightarrow \quad \rho(Tx, Ty) \leq \alpha \rho(x, y),$$

diremos que T es una aplicación de contracción.

Ejercicio

Prueba que toda aplicación de contracción es continua.

Definición

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. El punto $x \in \mathbb{X}$ se denomina punto fijo de T si Tx = x.

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. Si existe un $\alpha \in (0,1)$ tal que

$$\forall x, y \in \mathbb{X} \quad \Rightarrow \quad \rho(Tx, Ty) \leq \alpha \rho(x, y),$$

diremos que T es una aplicación de contracción.

Ejercicio

Prueba que toda aplicación de contracción es continua.

Definición

Sea $T: \mathbb{X} \mapsto \mathbb{X}$ una aplicación. El punto $x \in \mathbb{X}$ se denomina punto fijo de T si Tx = x.

Teorema (Del punto fijo)

Sea $\mathbb X$ un espacio métrico completo y $T: \mathbb X \mapsto \mathbb X$ una aplicación de contracción. Entonces T tiene un único punto fijo.

Un espacio métrico $\mathbb{X} \neq \emptyset$ completo es de segunda categoría.

Corolario: Sea $\mathbb{X} \neq \emptyset$ un espacio métrico completo. Supongamos que

$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k, \qquad M_k \subset \mathbb{X} \text{ conjuntos cerrados.}$$

Entonces al menos un M_k contiene un abierto no vacío (un entorno).

Un espacio métrico $\mathbb{X} \neq \emptyset$ completo es de segunda categoría.

Corolario: Sea $\mathbb{X} \neq \emptyset$ un espacio métrico completo. Supongamos que

$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k, \qquad M_k \subset \mathbb{X} \text{ conjuntos cerrados.}$$

Entonces al menos un M_k contiene un abierto no vacío (un entorno).

Pero si:
$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k \implies \mathbb{X} = \bigcup_{k=1}^{\infty} \overline{M_k}, \Longrightarrow \overline{M_k}$$
 contiene un abierto

Un espacio métrico $\mathbb{X} \neq \emptyset$ completo es de segunda categoría.

Corolario: Sea $\mathbb{X} \neq \emptyset$ un espacio métrico completo. Supongamos que

$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k, \qquad M_k \subset \mathbb{X} \text{ conjuntos cerrados.}$$

Entonces al menos un M_k contiene un abierto no vacío (un entorno).

Pero si:
$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k \implies \mathbb{X} = \bigcup_{k=1}^{\infty} \overline{M_k}, \Longrightarrow \overline{M_k}$$
 contiene un abierto

Aplicación: Sea A el espacio de las funciones continuas que tienen al menos en un punto una derivada lateral finita. Entonces A es un conjunto de primera categoría.

Un espacio métrico $\mathbb{X} \neq \emptyset$ completo es de segunda categoría.

Corolario: Sea $\mathbb{X} \neq \emptyset$ un espacio métrico completo. Supongamos que

$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k, \qquad M_k \subset \mathbb{X} \text{ conjuntos cerrados.}$$

Entonces al menos un M_k contiene un abierto no vacío (un entorno).

Pero si:
$$\mathbb{X} = \bigcup_{k=1}^{\infty} M_k \implies \mathbb{X} = \bigcup_{k=1}^{\infty} \overline{M_k}, \Longrightarrow \overline{M_k}$$
 contiene un abierto

Aplicación: Sea A el espacio de las funciones continuas que tienen al menos en un punto una derivada lateral finita. Entonces A es un conjunto de primera categoría.

Ejercicio: Probar que no existen funciones definidas en [0,1] que sean continuas en los racionales y discontinuas en los irracionales.

29