Ampliación de Análisis Matemático

Diplomatura en Estadística. Curso 2009/2010

http://euler.us.es/~renato/

R. Álvarez-Nodarse Universidad de Sevilla

Sistemas de EDOs y Álgebra Lineal

Un sistema de ecuaciones diferenciales ordinarias de primer orden (SEDO) es un sistema de la forma

$$\begin{cases} y'_1(x) = f_1(x, y_1, y_2, \dots, y_n), \\ y'_2(x) = f_2(x, y_1, y_2, \dots, y_n), \\ \vdots \\ y'_n(x) = f_n(x, y_1, y_2, \dots, y_n), \end{cases}$$

donde $y_1, \ldots y_n$ son funciones de x desconocidas y $f_1, \ldots f_n$ son ciertas funciones conocidas.

Por comodidad vamos a usar la forma vectorial del sistema anterior, o sea, vamos a denotar por Y, Y' y F son los vectores

$$Y(x) = \begin{pmatrix} y_{1}(x) \\ y_{2}(x) \\ \vdots \\ y_{n}(x) \end{pmatrix}, \quad Y'(x) = \begin{pmatrix} y'_{1}(x) \\ y'_{2}(x) \\ \vdots \\ y'_{n}(x) \end{pmatrix},$$

$$F(x, Y) = \begin{pmatrix} f_{1}(x, y_{1}, y_{2}, \dots, y_{n}) \\ f_{2}(x, y_{1}, y_{2}, \dots, y_{n}) \\ \vdots \\ f_{n}(x, y_{1}, y_{2}, \dots, y_{n}) \end{pmatrix}.$$

Usando lo anterior podemos reescribir el SEDO en la forma vectorial

$$\frac{d}{dx}Y(x) = Y'(x) = F(x, Y).$$

Evidentemente que el caso n = 1 recuperamos las EDOs de primer orden estudiadas con anterioridad.

Ejemplo

Resolver el sistema

$$\begin{cases} y_1' = 2xy_1 - y_1 \\ y_2' = 2xy_2 + y_1 \end{cases}$$

Ejemplo

Resolver el sistema

$$\begin{cases} y_1' = 2xy_1 - y_1 \\ y_2' = 2xy_2 + y_1 \end{cases}$$

Es evidente que el ejemplo anterior es un caso "atípicos" de sistemas pues hay una ecuación que sólo depende de una función que nos permite encontrar la solución y luego sustituirla en la segunda.

Ejemplo

Resolver el sistema

$$\begin{cases} y_1' = 2xy_1 - y_1 \\ y_2' = 2xy_2 + y_1 \end{cases}$$

Es evidente que el ejemplo anterior es un caso "atípicos" de sistemas pues hay una ecuación que sólo depende de una función que nos permite encontrar la solución y luego sustituirla en la segunda.

Nos restringiremos al estudio de los SEDOs lineales, es decir cuando f_k , $k=1,\ldots,n$ es una función lineal de la forma

$$f_k(x, y_1, y_2, \ldots, y_n) = \sum_{j=1}^n a_{kj}(x)y_j(x) + b_k(x), \qquad k = 1, \ldots, n.$$

$$\begin{cases} y_1'(x) = a_{11}(x)y_1(x) + a_{12}(x)y_2(x) + \dots + a_{1n}y_n(x) + b_1(x), \\ y_2'(x) = a_{21}(x)y_1(x) + a_{22}(x)y_2(x) + \dots + a_{2n}y_n(x) + b_2(x), \\ \vdots \\ y_n'(x) = a_{n1}(x)y_1(x) + a_{n2}(x)y_2(x) + \dots + a_{nn}y_n(x) + b_n(x). \end{cases}$$

$$\begin{cases} y_1'(x) = a_{11}(x)y_1(x) + a_{12}(x)y_2(x) + \dots + a_{1n}y_n(x) + b_1(x), \\ y_2'(x) = a_{21}(x)y_1(x) + a_{22}(x)y_2(x) + \dots + a_{2n}y_n(x) + b_2(x), \\ \vdots \\ y_n'(x) = a_{n1}(x)y_1(x) + a_{n2}(x)y_2(x) + \dots + a_{nn}y_n(x) + b_n(x). \end{cases}$$

El sistema anterior se puede escribir en forma matricial

$$Y'(x) = A(x)Y(x) + B(x),$$

$$A(x) = \begin{pmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) & \cdots & a_{1n}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & a_{n3}(x) & \cdots & a_{nn}(x) \end{pmatrix}, \quad B(x) = \begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}$$

Cuando B(x) = 0: caso homogéneo.

Breve repaso de Álgebra lineal

Espacios vectoriales

Definición

Sea V un conjunto de elementos sobre el cual están definidas las operaciones suma "+" de dos elementos x, y de V y multiplicación "·" de un escalar (número real) α por un elemento de V. V es un espacio vectorial si

- **1** $\forall x, y \in V$, el vector suma, $w = x + y \in V$ y se cumple que:
 - x + y = y + x
 - (x + y) + z = x + (y + z)
 - **3** Existe un elemento "nulo" de V, tal que x + 0 = 0 + x = x
 - Cualquiera sea el vector x de V, existe el elemento (-x) "opuesto" a x, tal que x + (-x) = (-x) + x = 0.
- ② $\forall x \in V$, el vector $w = \alpha \cdot x \in V$ y se cumple que:

 - $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$

Ejemplos de espacios vectoriales

- El conjunto de los vectores de \mathbb{R}^n cuando la suma de dos vectores y la multiplicación por un escalar es la estándard.
- ② El conjunto $\mathbb{R}^{m \times n}$ de las matrices $m \times n$ cuando la suma de dos matrices y la multiplicación por un escalar es la estándard.
- **3** El conjunto \mathbb{P}_n de los polinomios de grado a lo sumo n

$$\mathbb{P}_n = \{ p_n(t) = a_0 + a_1 \ t + \dots + a_n \ t^n, \quad a_0, \dots, a_n \ \text{números reales.} \},$$

donde definimos

$$p(t) = a_0 + a_1 t + \cdots + a_n t^n$$
, $q(x) = b_0 + b_1 t + \cdots + b_n t^n$,

$$(p+q)(t) \equiv p(t)+q(t)=(a_0+b_0)+(a_1+b_1)t+\cdots+(a_n+b_n)t^n,$$

$$(\alpha \cdot p)(t) \equiv \alpha p(t) = (\alpha a_0) + (\alpha a_1)t + \cdots + (\alpha a_n)t^n.$$

Además, $p_n = 0$, si y sólo si $a_0 = a_1 = \cdots = a_n = 0$.

• El conjunto $C_{[a,b]}$ de las funciones continuas en [a,b]

Definición

Sea V un espacio vectorial. Diremos que un subconjunto H de elementos de V es un subespacio vectorial de V si H es a su vez un espacio vectorial respecto a las mismas operaciones suma "+" y multiplicación "·" que V.

Ejemplos.

- Dado un espacio vectorial V, son subespacios vectoriales "triviales" los subespacios $H = \{0\}$ (conjunto que tiene como único elemento, el nulo) y H = V (el mismo espacio vectorial).
- ② Para $V = C_{[a,b]}$, $H = \mathbb{P}_n$ es un subespacio vectorial, para cualquier n = 0, 1, 2, ... entero.
- **3** Para $V = \mathbb{P}_n$, $H = \mathbb{P}_k$ es un subespacio vectorial para todo k < n.

Teorema

Un subconjunto H de elementos de V es un subespacio vectorial de V si y sólo si se cumple que

• Para todos x e y, vectores de H y α , $\beta \in \mathbb{R}$ el vector $w = \alpha x + \beta y$ también es un vector de H.

Teorema

Un subconjunto H de elementos de V es un subespacio vectorial de V si y sólo si se cumple que

• Para todos x e y, vectores de H y α , $\beta \in \mathbb{R}$ el vector $w = \alpha x + \beta y$ también es un vector de H.

Al vector $v = x_1v_1 + x_2v_2 + \cdots + x_pv_p$, $x_1, \dots, x_p \in \mathbb{R}$, se le denomina combinación lineal de los vectores v_1, v_2, \dots, v_p .

Sea $\mathrm{span}\left(v_1,v_2,...,v_p\right)$ el conjunto de todas las combinaciones lineales de los vectores $v_1,v_2,...,v_p\in V$

Teorema

Un subconjunto H de elementos de V es un subespacio vectorial de V si y sólo si se cumple que

• Para todos x e y, vectores de H y α , $\beta \in \mathbb{R}$ el vector $w = \alpha x + \beta y$ también es un vector de H.

Al vector $v=x_1v_1+x_2v_2+\cdots+x_pv_p, \quad x_1,\ldots,x_p\in\mathbb{R},$ se le denomina combinación lineal de los vectores $v_1,v_2,...,v_p.$

Sea $\operatorname{span}(v_1, v_2, ..., v_p)$ el conjunto de todas las combinaciones lineales de los vectores $v_1, v_2, ..., v_p \in V$

Teorema

 $\operatorname{span}(v_1, v_2, ..., v_p)$ es un subespacio vectorial de V.

Dicho subespacio vectorial comúnmente se denomina subespacio generado por los vectores $v_1, v_2, ..., v_p$.

Conjuntos linealmente independientes

Definición

Un conjunto de vectores $v_1, v_2, ..., v_p$ de un espacio vectorial V se denomina **linealmente independiente** si la ecuación vectorial

$$x_1v_1+x_2v_2+\cdots+x_\rho v_\rho=0,\quad x_1,x_2,\cdots,x_\rho\in\mathbb{R}$$

tiene como única solución la trivial $x_1 = \cdots = x_p = 0$.

Conjuntos linealmente independientes

Definición

Un conjunto de vectores $v_1, v_2, ..., v_p$ de un espacio vectorial V se denomina **linealmente independiente** si la ecuación vectorial

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0, \quad x_1, x_2, \cdots, x_p \in \mathbb{R}$$

tiene como única solución la trivial $x_1 = \cdots = x_p = 0$.

Definición Definición

Un conjunto de vectores $v_1, v_2, ..., v_p$ se denomina **linealmente dependiente** si existen $x_1, x_2, \cdots, x_p \in \mathbb{R}$ no todos iguales a cero tales que se verifique la ecuación vectorial

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0.$$

Conjuntos linealmente independientes

Las siguientes propiedades se pueden verificar fácilmente:

- Un conjunto $S = \{v_1, v_2, ..., v_p\}$ de dos o más vectores es linealmente dependiente si y sólo si al menos uno de los vectores del conjunto es combinación lineal de los demás.
- ② Un conjunto $S = \{v_1, v_2, ..., v_p\}$ de dos o más vectores de V con alguno de los vectores $v_i = 0$ $(1 \le i \le p)$ es necesariamente un conjunto de vectores linealmente dependientes (¿por qué?).
- **3** Dos vectores v_1 y v_2 de V son linealmente dependientes si y sólo si son proporcionales, es decir, si existe un número real α tal que $v_1 = \alpha v_2$ o $v_2 = \alpha v_1$

Importancias de los vectores li: Bases

Definición

Sea H un subespacio vectorial del espacio vectorial V. El conjunto de vectores $B = \{b_1, b_2, ..., b_p\}$ de V es una base de H si

- i) B es un conjunto de vectores linealmente independientes
- ii) $H = \operatorname{span}(b_1, b_2, ..., b_p)$, o sea, B genera a todo H.

En particular si H coincide con V, entonces B es una base de todo el espacio vectorial V.

Importancias de los vectores li: Bases

Definición

Sea H un subespacio vectorial del espacio vectorial V. El conjunto de vectores $B = \{b_1, b_2, ..., b_p\}$ de V es una base de H si

- i) B es un conjunto de vectores linealmente independientes
- ii) $H = \operatorname{span}(b_1, b_2, ..., b_p)$, o sea, B genera a todo H.

En particular si H coincide con V, entonces B es una base de todo el espacio vectorial V.

Ejemplo 1: Las n columnas $a_1, ..., a_n$ de una matriz invertible $n \times n$, son **li** y además $\mathbb{R}^n = \mathrm{span}\,(a_1, ..., a_n)$. Por tanto $B = a_1, ..., a_n$ es una base de \mathbb{R}^n . Si $A = I_n$, es la matriz identidad $n \times n$, las columnas $e_1, e_2, ..., e_n$ de la misma son la base canónica de \mathbb{R}^n .

Importancias de los vectores li: Bases

Definición

Sea H un subespacio vectorial del espacio vectorial V. El conjunto de vectores $B = \{b_1, b_2, ..., b_p\}$ de V es una base de H si

- i) B es un conjunto de vectores linealmente independientes
- ii) $H = \operatorname{span}(b_1, b_2, ..., b_p)$, o sea, B genera a todo H.

En particular si H coincide con V, entonces B es una base de todo el espacio vectorial V.

Ejemplo 1: Las n columnas $a_1, ..., a_n$ de una matriz invertible $n \times n$, son **li** y además $\mathbb{R}^n = \mathrm{span}\,(a_1, ..., a_n)$. Por tanto $B = a_1, ..., a_n$ es una base de \mathbb{R}^n . Si $A = I_n$, es la matriz identidad $n \times n$, las columnas $e_1, e_2, ..., e_n$ de la misma son la base canónica de \mathbb{R}^n .

Ejemplo 2: El conjunto de vectores $S = \{1, t, t^2, ..., t^n\} \in \mathbb{P}_n$ es **li**, además span $(1, t, t^2, ..., t^n) = \mathbb{P}_n$. Luego S es una base de \mathbb{P}_n (canónica).

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

El menor número de vectores linealmente independientes que generan un espacio vectorial es una propiedad intrínseca de dicho espacio y se denomina dimensión del espacio vectorial.

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

El menor número de vectores linealmente independientes que generan un espacio vectorial es una propiedad intrínseca de dicho espacio y se denomina dimensión del espacio vectorial.

▶Un espacio vectorial V es de dimensión finita n si V está generado por una base de n elementos en cuyo caso dim V=n.

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

El menor número de vectores linealmente independientes que generan un espacio vectorial es una propiedad intrínseca de dicho espacio y se denomina dimensión del espacio vectorial.

- ▶Un espacio vectorial V es de dimensión finita n si V está generado por una base de n elementos en cuyo caso dim V = n.
- ►El espacio nulo {0} tiene dimensión 0.

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

El menor número de vectores linealmente independientes que generan un espacio vectorial es una propiedad intrínseca de dicho espacio y se denomina dimensión del espacio vectorial.

- ▶Un espacio vectorial V es de dimensión finita n si V está generado por una base de n elementos en cuyo caso dim V = n.
- ightharpoonup El espacio nulo $\{0\}$ tiene dimensión 0.
- ▶Si V no puede ser generado por una base finita, entonces V es de dimensión infinita: dim $V = \infty$.

Teorema

Si un espacio vectorial V tiene una base de n vectores $B = \{b_1, b_2, ..., b_n\}$, entonces cualquier conjunto con más de n vectores de V es linealmente dependiente. Además, si un espacio vectorial V tiene una base de n vectores $B = \{b_1, ..., b_n\}$, entonces cualquier otra base de V tendrá que tener n vectores de V.

El menor número de vectores linealmente independientes que generan un espacio vectorial es una propiedad intrínseca de dicho espacio y se denomina dimensión del espacio vectorial.

- ▶Un espacio vectorial V es de dimensión finita n si V está generado por una base de n elementos en cuyo caso dim V = n.
- ▶El espacio nulo $\{0\}$ tiene dimensión 0.
- ▶Si V no puede ser generado por una base finita, entonces V es de dimensión infinita: dim $V = \infty$.

Ejemplos: $\dim \mathbb{R}^n = n$, $\dim \mathbb{P}_n = n+1$, $\dim \mathcal{C}_{[a,b]} = \infty$

Definición

Sea A una matriz de $n \times n$. Denominaremos al vector x de \mathbb{R}^n , autovector de A asociado al autovalor λ , al vector **no nulo** $x \neq 0$, tal que

$$Ax = \lambda x, \qquad x \neq 0.$$

Definición

Sea A una matriz de $n \times n$. Denominaremos al vector x de \mathbb{R}^n , autovector de A asociado al autovalor λ , al vector **no nulo** $x \neq 0$, tal que

$$Ax = \lambda x, \qquad x \neq 0.$$

Es fácil comprobar que si x es un autovector asociado al autovalor λ , entonces el sistema

$$(A - \lambda I)x = 0$$
, donde I_n es la matriz identidad $n \times n$,

tiene soluciones no triviales. Por tanto, dado un autovalor λ de A, el conjunto de los autovectores asociados a λ es un subespacio vectorial de \mathbb{R}^n . Dicho espacio se denomina *autoespacio* de A correspondiente al autovalor λ .

Teorema

Sea A una matriz de $n \times n$ que tiene p autovalores distintos $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_p$. Entonces los autovectores $v_1, v_2, ..., v_p$ asociados a los autovalores $\lambda_1, \lambda_2, ..., \lambda_p$ son linealmente independientes.

Teorema

Sea A una matriz de $n \times n$ que tiene p autovalores distintos $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_p$. Entonces los autovectores $v_1, v_2, ..., v_p$ asociados a los autovalores $\lambda_1, \lambda_2, ..., \lambda_p$ son linealmente independientes.

Corolario

Si una matriz $n \times n$ tiene n autovalores distintos, entonces los correspondientes autovectores forman una base de \mathbb{R}^n .

¿Cómo calcular los autovalores?

¿Cómo calcular los autovalores? Los autovalores λ son tales que

$$Ax = \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0$$

tiene soluciones no triviales.

¿Cómo calcular los autovalores? Los autovalores λ son tales que

$$Ax = \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0$$

tiene soluciones no triviales.

Pero un sistema homogéneo tiene soluciones no triviales si y sólo si

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0. \tag{*}$$

La ecuación anterior se denomina ecuación característica de A.

¿Cómo calcular los autovalores? Los autovalores λ son tales que

$$Ax = \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0$$

tiene soluciones no triviales.

Pero un sistema homogéneo tiene soluciones no triviales si y sólo si

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0. \tag{*}$$

La ecuación anterior se denomina ecuación característica de A.

Así pues, un número λ es un autovalor de la matriz A de $n \times n$ si y sólo si λ satisface la ecuación característica de A (*), $\det(A - \lambda I) = 0$.

¿Cómo calcular los autovalores? Los autovalores λ son tales que

$$Ax = \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0$$

tiene soluciones no triviales.

Pero un sistema homogéneo tiene soluciones no triviales si y sólo si

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0. \tag{*}$$

La ecuación anterior se denomina ecuación característica de A.

Así pues, un número λ es un autovalor de la matriz A de $n \times n$ si y sólo si λ satisface la ecuación característica de A (*), $\det(A - \lambda I) = 0$.

Es fácil ver que $\det(A - \lambda I)$ es un polinomio de grado n en λ . Por lo que el polinomio $p_n(\lambda) = \det(A - \lambda I)$ se le denomina polinomio característico de A.

Los autovalores de A serán las raíces de dicho polinomio, i.e., λ es un autovalor de A si y sólo si $p_n(\lambda) = 0$.

Definición

Una matriz A de $n \times n$ es diagonalizable si existe una matriz P invertible y una D diagonal, tales que $A = \mathbf{P} \cdot \mathbf{D} \cdot \mathbf{P}^{-1}$ (AP = PD).

Definición

Una matriz A de $n \times n$ es diagonalizable si existe una matriz P invertible y una D diagonal, tales que $A = \mathbf{P} \cdot \mathbf{D} \cdot \mathbf{P}^{-1}$ (AP = PD).

Teorema

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Los autovalores son $\lambda_1 = 6$, $\lambda_2 = -1$ y los autovectores $x_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ y $x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ \Rightarrow

Definición

Una matriz A de $n \times n$ es diagonalizable si existe una matriz P invertible y una D diagonal, tales que $A = \mathbf{P} \cdot \mathbf{D} \cdot \mathbf{P}^{-1}$ (AP = PD).

Teorema

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Los autovalores son $\lambda_1 = 6$, $\lambda_2 = -1$ y los autovectores $x_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ y $x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ \Rightarrow

$$D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix},$$

Definición

Una matriz A de $n \times n$ es diagonalizable si existe una matriz P invertible y una D diagonal, tales que $A = \mathbf{P} \cdot \mathbf{D} \cdot \mathbf{P}^{-1}$ (AP = PD).

Teorema

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Los autovalores son $\lambda_1 = 6$, $\lambda_2 = -1$ y los autovectores $x_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ y $x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ \Rightarrow $D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}$, $P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}$ \Rightarrow

Definición

Una matriz A de $n \times n$ es diagonalizable si existe una matriz P invertible y una D diagonal, tales que $A = \mathbf{P} \cdot \mathbf{D} \cdot \mathbf{P}^{-1}$ (AP = PD).

Teorema

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Los autovalores son $\lambda_1 = 6$, $\lambda_2 = -1$ y los autovectores $x_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ y $x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ \Rightarrow $D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}$, $P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}$ \Rightarrow $A \cdot P = P \cdot D$

$$A = P \cdot D \cdot P^{-1} \Rightarrow$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) =$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} =$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Calculemos A^5 .

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Calculemos A^5 .

$$P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 1/7 & 1/7 \\ -5/7 & 2/7 \end{pmatrix}, \quad D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Calculemos A^5 .

$$P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 1/7 & 1/7 \\ -5/7 & 2/7 \end{pmatrix}, \quad D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$A^5 = P \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}^5 P^{-1} =$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Calculemos A^5 .

$$P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 1/7 & 1/7 \\ -5/7 & 2/7 \end{pmatrix}, \quad D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$A^5 = P \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}^5 P^{-1} = P \begin{pmatrix} 6^5 & 0 \\ 0 & (-1)^5 \end{pmatrix} P^{-1} =$$

$$A = P \cdot D \cdot P^{-1} \implies A^2 = (P \cdot D \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) = P \cdot D \cdot (P^{-1} \cdot P) \cdot D \cdot P^{-1} = P \cdot D \cdot I \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

En general
$$A^n = P \cdot D^n \cdot P^{-1}$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$$
. Calculemos A^5 .

$$P = \begin{pmatrix} 2 & -1 \\ 5 & 1 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 1/7 & 1/7 \\ -5/7 & 2/7 \end{pmatrix}, \quad D = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$A^5 = P \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}^5 P^{-1} = P \begin{pmatrix} 6^5 & 0 \\ 0 & (-1)^5 \end{pmatrix} P^{-1} = \begin{pmatrix} 2221 & 2222 \\ 5555 & 5554 \end{pmatrix}.$$

Sistemas de ecuaciones lineales con Maxima

Veamos ahora como trabajar con *Maxima* los sistemas de ecuaciones lineales.