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Apdo. 1160, E-41080 Sevilla, Spain

2D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University
Vorob’evy Gory, Moscow 119992, Russia

e-mails: ran@us.es yurismirnov@rbcmail.ru

Abstract

We show that for every set of discrete polynomials yn(x(s)) on the lattice x(s), defined on a finite
interval (a, b), it is possible to construct two sets of dual polynomials zk(ξ(t)) of degrees k = s−a and
k = b− s− 1. Here we do this for the classical and alternative Hahn and Racah polynomials as well as
for their q-analogs. Also we establish the connection between classical and alternative families. This
allows us to obtain new expressions for the Clerbsch–Gordan and Racah coefficients of the quantum
algebra Uq(su(2)) in terms of various Hahn and Racah q-polynomials.

Keywords: discrete orthogonal polynomials, Hahn and Racah polynomials, Uq(su(2)) quantum algebra,
q-Clebsch–Gordan and q-Racah coefficients.

1. Introduction

The symmetries of quantum states play an important role in explaining the degeneracy of energy
levels [1]. The connection of the energy levels of the hydrogen atom with the irreducible representation of
O(4, 2) conformal symmetry was found in [2]. The q-deformed Heisenberg–Weyl symmetry was used to
introduce the notion of quantum q-oscillators [3,4]. The physical meaning of q-deformations was clarified
in [5] where it was shown that classical q-oscillators and their quantum partners are standard nonlinear
oscillators vibrating with a frequency depending on the amplitude. Thus, the symmetry groups and the
q-deformed symmetry groups are important ingredients in the description of states in quantum optics
and quantum mechanics. A general consideration of constructing the irreducible representations of Lie
groups and their connection with the formalism of classical mechanics was presented in [6] in the context
of symmetry applications in quantum mechanics and quantum optics.

The matrix elements of the operator of irreducible representations of the Lie group SU(2) and q-
deformed SUq(2)-quantum group are expressed in terms of some special functions. The special functions
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are related to Clebsch–Gordan coefficients and their generalizations. The aim of this work is to study
some polynomials which naturally appear in the physical problems associated with the q-symmetries.

In the present paper, we study further the properties of polynomial solutions yn(x(s)) of the second-
order linear difference equation (SODE) of hypergeometric-type on the lattice x(s) [7, 8]

σ(s)
∆

∆x(s− 1/2)
∇y(s)
∇x(s)

+ τ(s)
∆y(s)
∆x(s)

+ λy(s) = 0,

where ∆f(s) = f(s + 1)− f(s− 1) and ∇f(s) = f(s)− f(s− 1), or written in equivalent form

A(s)y(s + 1) + B(s)y(s) + C(s)y(s− 1) + λny(s) = 0, B(s) = −A(s)− C(s) , (1)

where
φ(s) = σ(s) + τ(s)∆x(s− 1/2)

and

A(s) =
φ(s)

∆x(s)∆x(s− 1/2)
, C(s) =

σ(s)
∇x(s)∆x(s− 1/2)

. (2)

The polynomial solutions of the above difference equations are called hypergeometric polynomials on the
nonuniform lattice x(s). They can be expressed using the Rodrigues-type formula [8]

Pn(x(s))q =
Bn

ρ(s)
∇(n)ρn(s), ∇(n) :=

∇
∇x1(s)

∇
∇x2(s)

· · · ∇
∇xn(s)

, (3)

where ρ is the solution of the Pearson-type equation ∆σ(s)ρ(s) = τ(s)ρ(s)∆x(s− 1/2),

ρn(s) = ρ(s + n)
n∏

k=1

σ(s + k), xk(s) = x(s + k/2),

and Bn is a normalizing factor.
It is well known [7] that for any family yn(x(s)) of orthogonal polynomials of discrete variable x(s)

on a finite interval a ≤ s ≤ b− 1, there is a corresponding dual family zk(ξ(t)) defined on a new discrete
variable ξ(t), a′ ≤ t ≤ b′ − 1. In fact, if the boundary conditions

xk(s− 1/2)σ(s)ρ(s)
∣∣∣
s=a,b

= 0

hold, then the polynomials Pn(s) satisfy the orthogonality relation (for more details, see [7, 8])

b−1∑
s=a

yn(x(s))ym(x(s))ρ(s)∆(x(s− 1/2)) = δnmd2
n. (4)

There is also another orthogonality relation that can be written as follows:

b−a−1∑
n=0

yn(x(s))yn(x(s′))d2
n = δss′

1
ρ(x(s))

. (5)
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This relation can be understood as a dual orthogonality relation (see [8], pp. 38, 39), i.e., the relation
for the dual set (zk(ξ(tn)))k

zk(ξ(tn)) ∼ yn(x(s)), k = 0, 1, . . . , b− a− 1 , (6)

defined in some lattice ξ(tn), and orthogonal with respect to a weight function

ρ′(ξ(tn)) =
d2

n

∆x(tn − 1/2)

defined on the interval (a′, b′) with the norm

d′2k =
1

ρ(x(s))∆(x(s− 1/2))
.

We will write (5) in the following way:

b′−1∑
tn=a′

zk(tn)z`(tn)ρ′(tn)∆ξ(tn − 1/2) = δk`(d′k)
2, (7)

where ρ′(t) and d′2k are the corresponding weight function and norm, respectively.
Notice that the dual polynomials are the solution of a second-order difference equation that corre-

sponds to the three-term recurrence relation (TTRR) of the family yn(x(s))

x(s)yn(x(s)) = αnyn+1(x(s)) + βnyn(x(s)) + γnyn−1(x(s)) . (8)

Let us point out here that in [7,8] only one kind of dual polynomials was considered, indeed the ones
with degree k = s− a for which the following connection formula:

zk(ξ(t)) = Dknyn(x(s)) (9)

was established. Nevertheless, for a finite interval (a, b), there exists another possibility corresponding to
the dual polynomials associated with the family yn(x(s)) but with degree k = b− s− 1, i.e.,

z′k(ξ(tn)) = D′
knyn(x(s)) . (10)

In the following, for the sake of simplicity, we will write t instead of tn.
This second kind of dual polynomials has not been considered (as far as we know), so the aim of the

present work is to complete this point. Some results concerning the dual family of polynomials can be
found in [9–11] for a finite support, and in [12] (and references therein) for an infinite (but countable)
support.

We will focus our attention in the study of the dual sets to the Hahn and Racah polynomials and
their q-analogs. For each family, we will construct two dual sets of polynomials.

We start rewriting (1) in the form

yn(x(s)) =
(
− λn

A(s− 1)
− B(s− 1)

A(s− 1)

)
yn(x(s− 1))− C(s− 1)

A(s− 1)
yn(x(s− 2)) . (11)
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Hence, by induction it is easy to see that the polynomial yn(x(s)), which is a polynomial of degree n in
x(s), is also a polynomial of degree k = s− a in λn. Rewriting (1) in the following way:

yn(x(s)) =
(
− λn

C(s + 1)
− B(s + 1)

A(s + 1)

)
yn(x(s + 1))− A(s + 1)

C(s + 1)
yn(x(s + 2)) , (12)

we conclude that yn(x(s)) is also a polynomial of λn but with degree k = b− s− 1.

Example: To illustrate this, let us consider the classical Hahn hαβ
n (s, a, b) and Racah uαβ

n (s, a, b) poly-
nomials. For these families, we have [7, 8]

λn = n(α + β + n + 1) = t(t + 1)− 1
4
(α + β)(α + β + 2) , (13)

where
t =

1
2
(α + β) + n.

For the corresponding alternative Hahn and Racah polynomials h̃αβ
n (s, a, b) and ũαβ

n (s, a, b), we have

λn = n(2b− 2a + α + β − n− 1) = −t̃(t̃ + 1) +
(

b− a +
1
2
(α + β)− 1

)(
b− a +

1
2
(α + β)

)
,

where
t̃ = b− a +

1
2
(α + β)− n− 1.

Therefore Eq. (9) leads to a polynomial of degree k = s− a in the variables t or t̃, whereas (10) leads to
a polynomial of degree k = b− s− 1 in the same variables. Notice that t̃ transforms into t if we replace
n by b− a− n− 1, i.e., t̃ → t, if n → b− a− n− 1 .

Before continuing our analysis, let us mention that for a finite interval (a, b) the two different families
of polynomials can always be constructed – the standard one and an alternative one. This is shown for
the Hahn case in [8] (see Sec. 2.4.2.1, p. 32). We will consider here both cases in detail. �

Let continue with our analysis.
By iterating formulas (11) and (12), we obtain that the coefficient of the power [t(t + 1)]k of the

polynomial yn(x(s)) is

Akn = (−1)s−ayn(x(a))
s−a∏
l=1

1
A(s− l)

, k = s− a,

A′
kn = (−1)b−s−1yn(x(b− 1))

b−s−1∏
l=1

1
C(s + l)

, k = b− s− 1.

(14)

Analogously, iterating (11) and (12) for the alternative polynomials ỹn(x(s)) we find

Ãkn = ỹn(x(a))
s−a∏
l=1

1

Ã(s− l)
, k = s− a,

Ã′
kn = ỹn(x(b− 1))

b−s−1∏
l=1

1

C̃(s + l)
, k = b− s− 1.

(15)
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Therefore, the proportionality factors between the families yn, ỹn and their dual ones are

Dkn =
ak

Akn
, D′

kn =
ak

A′
kn

, D̃kn =
ãk

Ãkn

, and D̃′
kn =

ãk

Ã′
kn

, (16)

respectively. Here ak and ãk are the leading coefficients of the corresponding dual polynomials zk(ξ(t))
and z̃k(ξ(t)), i.e., the coefficient of [t(t + 1)]k and [t̃(t̃ + 1)]k, respectively. These coefficients and other
needed characteristics of the classical polynomials can be found in [7, 8].

Comparing the orthogonality relations for the starting polynomials yn(x(s)) and their dual ones, we
conclude that the coefficient Dkn can be obtained by the formula

D2
kn =

ρ(s)d2
k

ρ(t)d2
n

, (17)

where ρ(s) and ρ′(t) are the weight functions for the polynomials yn(x(s)) and zk(ξ(t)), respectively, and
d2

n and (d′k)
2, the corresponding norms.

The last formula can be used for computing the corresponding characteristics of the dual family
especially if we combine it with formulas (9) and (16). Notice that for using formula (14) we need the
values of the polynomial yn(x(s)) at the end of the interval of orthogonality (a, b). These values can be
obtained in a straightforward way by using the Rodrigues formula for the polynomials yn(x(s)) [7, 8].

The structure of the paper is as follows.
In Secs. 2 and 3 we discuss the dual properties of Hahn and Racah polynomials. In Secs. 4 and

5 similar problems are considered for the Hahn and Racah q-polynomials. Finally, Sec. 6 is devoted
to the Clebsch–Gordan and Racah coefficients for the algebras su(2) and Uq(su(2)) for which various
expressions in terms of Hahn and Racah polynomials and q-polynomials are obtained. In Sec. 7 final
remarks are presented.

2. Dual Properties of the Hahn Polynomials

The dual Hahn polynomials were studied in several papers (see [18] and references therein) and, in
particular, in [8]. Here we will complete this study applying the results discussed above.

The Hahn polynomials are defined by the expression (see [8], [Eq. (2.7.19), p. 52])

hα,β
n (x,N) =

(1−N)n(β + 1)n

n! 3F2

(
−x, α + β + n + 1,−n

1−N, β + 1

∣∣∣∣1), (18)

and the alternative Hahn polynomials are (see [8], p. 53)

h̃α,β
n (x,N) =

(1−N)n(1− β −N)n

n! 3F2

(
−x,−2N − α− β + n + 1,−n

1−N, 1− β −N

∣∣∣∣1). (19)

Their main characteristics can be found in [8] (Tables 2.1 and 2.2, pp. 42–43).
The dual Hanh polynomials are defined by

wc
n(x(s), a, b) =

(a− b + 1)n(a + c + 1)n

n! 3F2

(
a− s, s + a + 1,−n

a− b + 1, a + c + 1

∣∣∣∣1). (20)

Notice that they are polynomials of degree n on the lattice x(s) = s(s+1) (i.e., a quadratic lattice) with
the leading coefficient an = (n!)−1. Their main characteristics are given in [8] (Table 3.7, p. 109).
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2.1. Polynomials of Degree k = s Dual to the Classical Hahn Polynomials

The Hahn polynomials hαβ
n (s,N) are orthogonal in the finite interval (a, b) = (0, N). They satisfy

the difference equation (1), where

A(s) = σ(s) + τ(s) = (N − s− 1)(s + β + 1) , C(s) = σ(s) = s(N + α− s) ,

λn = n(α + β + n + 1) = t(t + 1)− (α + β)(α + β + 2)/4 with t = [(α + β)/2] + n.

Since for the Hahn polynomials we have

hαβ
n (0, N) = (−1)n Γ(N)Γ(n + β + 1)

Γ(n + 1)Γ(N − n)Γ(β + 1)

and
s∏

i=1

1
(N − s− i)(s + β + i)

=
Γ(N − a)Γ(s + β + 1)

Γ(N − s)Γ(β + 1)
,

so
Ak = (−1)k+n Γ(N − k)Γ(n + β + 1)

Γ(n + 1)Γ(N − n)Γ(k + β + 1)
.

In this case, the dual to hαβ
n (s,N) polynomial of degree k = s is the classical dual Hahn polynomial

defined by (20)

wc
k(t) := wc

k(t, a, b), where a =
α + β

2
, b = N +

α + β

2
, c =

β − α

2
. (21)

The leading coefficient of the polynomials wc
k(t) (i.e., the coefficient of the power [t(t + 1)]k) is equal to

(k!)−1. In this case, the proportionality coefficient between the Hahn polynomials hαβ
n (s,N) and the dual

ones wc
k(t) is

Dkn =
ak

Akn
= (−1)k+n Γ(n + 1)Γ(N − n)Γ(k + β + 1)

Γ(k + 1)Γ(N − k)Γ(n + β + 1)
.

Then, we have the following connection formula:

wc
k(t, a, b) = (−1)n+k Γ(n + 1)Γ(N − n)Γ(k + β + 1)

Γ(k + 1)Γ(N − k)Γ(n + β + 1)
hαβ

n (s,N) , (22)

where k = s, t = [(α + β)/2] + n, and a, b, and c are given by (21).

2.2. Polynomials of Degree k = N − s− 1 Dual to the Classical Hahn Polynomials

Next, taking into account that

hαβ
n (N − 1, N) =

Γ(N)Γ(n + α + 1)
Γ(n + 1)Γ(N − n)Γ(α + 1)

and
N−s−1∏

i=1

1
(s + i)Γ(N + α− s− i)

=
Γ(s + 1)Γ(α + 1)

Γ(N + α− s)Γ(N)
,
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we obtain
A′

kn = (−1)k Γ(N − k)Γ(n + α + 1)
Γ(n + 1)Γ(N − n)Γ(k + α + 1)

.

In this case, the polynomials of degree k = N − s− 1, dual to hαβ
n (s,N), are given by the formula

wc′
k (t) := wc′

k (t, a, b), where a =
α + β

2
, b = N +

α + β

2
, c′ =

α− β

2
. (23)

Furthermore, the coefficient ak of [t(t + 1)]k is equal to (k!)−1 and the proportionality coefficient is given
by

D′
kn =

ak

A′
k

= (−1)k Γ(n + 1)Γ(N − n)Γ(k + α + 1)
Γ(k + 1)Γ(N − k)Γ(n + α + 1)

.

Therefore, the following connection formula holds:

wc′
k (t, a, b) = (−1)N−s−1 Γ(n + 1)Γ(N − n)Γ(k + α + 1)

Γ(k + 1)Γ(N − k)Γ(n + α + 1)
hαβ

n (s,N) , (24)

where k = N − s− 1, t = [(α + β)/2] + n, and a, b, and c are given by (23).

2.3. Polynomials of Degree k = s Dual to the Alternative Hahn Polynomials

The alternative Hahn polynomials h̃αβ
n (s,N) are orthogonal in the finite interval (a, b) = (0, N). They

satisfy the difference equation (1) with

A(s) = σ̃(s) + τ̃(s) = (N − s− 1)(N + β − s− 1) , C(s) = σ̃(s) = s(s + α) ,

λn = n(2N + α + β − n− 1) = −t̃(t̃ + 1) +
(
N + α+β

2 − 1
)

(N + α + β),

where t̃ = N + [(α + β)/2]− n− 1. Since

h̃αβ
n (0, N) =

Γ(N)Γ(N + β)
Γ(n + 1)Γ(N − n)Γ(N + β − n)

and
s∏

i=1

1
(s + i)(s + α + i)

=
Γ(N)Γ(N + β)

Γ(s + 1)Γ(s + α + 1)
,

we find
Ãkn =

Γ(N − s)Γ(N + β − s)
Γ(n + 1)Γ(N − n)Γ(N + β − n)

.

The corresponding dual polynomials to h̃αβ
n (s,N) of degree k = s are then given by

wc′
k (t̃) := w

(α,β)
k (t̃, a, b), with a =

α + β

2
, b = N +

α + β

2
, c′ =

α− β

2
, (25)

where wc′
k (t̃) denotes the same family as before but with different parameters and variable. Thus the

leading coefficient is ak = (k!)−1. In this case, the proportionality coefficient reads

D̃kn =
ak

Ãkn

=
Γ(n + 1)Γ(N − n)Γ(N + β − n)
Γ(s + 1)Γ(N − s)Γ(N + β − s)

.
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Therefore, the connection between the two families is as follows:

wc′
k (t̃, a, b) =

Γ(n + 1)Γ(N − n)Γ(N + β − n)
Γ(s + 1)Γ(N − s)Γ(N + β − s)

h̃αβ
n (s,N) , (26)

where k = s, t̃ = N + [(α + β)/2]− n− 1, and a, b, and c′ are given by (25).

2.4. Polynomials of Degree k = N − s− 1 Dual to the Alternative Hahn Polynomials

In this case, using

h̃αβ
n (N − 1, N) = (−1)n Γ(N)Γ(N + α)

Γ(n + 1)Γ(N − n)Γ(N + α− n)

and
N−s−1∏

i=1

1
(s + i)(s + α + i)

=
Γ(s + 1)Γ(s + α + 1)

Γ(N + α)Γ(N)
,

we obtain

Ã′
kn = (−1)n Γ(s + 1)Γ(s + α + 1)

Γ(n + 1)Γ(N − n)Γ(N + α− n)
.

Therefore, the polynomials of degree k = N − s − 1, dual to h̃αβ
n (s,N), are the dual Hahn polynomials

wc
k(t̃)

wc
k(t̃) := w

(α,β)
k (t̃, a, b) where a =

α + β

2
, b = N +

α + β

2
, c =

α− β

2
, (27)

with leading coefficient ã′k = (k!)−1 = [(N − s− 1)!]−1. The proportionality coefficient reads

D̃′
kn =

ã′k

Ã′
k

= (−1)n Γ(n + 1)Γ(N − n)Γ(N + α− n)
Γ(s + 1)Γ(N − s)Γ(s + α + 1)

.

Therefore, they are related to the alternative Hahn polynomials by the formula

wc
k(t̃, a, b) = (−1)n Γ(n + 1)Γ(N − n)Γ(N + α− n)

Γ(s + 1)Γ(N − s)Γ(s + α + 1)
h̃αβ

n (s,N) , (28)

where k = s, t̃ = N + [(α + β)/2]− n− 1, and a, b, and c are given by (27).

2.5. Connection between the Two Hahn Families hαβ
n (s, N) and h̃αβ

n (s, N)

Comparing (22) and (26) we see that the left-hand side of (26) transforms into the left-hand side of
(22), if one changes n → N − n− 1 (i.e., t̃ → t) and c′ → c (i.e., α ↔ β). Then we obtain

hαβ
n (s,N) = (−1)n+s Γ(n + α + 1)Γ(n + β + 1)

Γ(s + β + 1)Γ(N + α− s)
h̃βα

N−n−1(s,N) . (29)

The same formula is obtained if we use Eqs. (24) and (28).

27



Journal of Russian Laser Research Volume 28, Number 21, 2007

Finally, comparing formulas (22) and (24), we obtain

wc′
N−s−1(t, a, b) = (−1)N+n−1 Γ(N + α− s)Γ(n + β + 1)

Γ(s + β + 1)Γ(n + α + 1)
wc

s(t, a, b) ,

and taking into account the values for the parameters [see (21) and (23)]

α = a− c, β = a + c, n = t− a, N = b− a,

we arrive at the identity

w
(−c)
N−s−1(t, a, b) = (−1)b−t−1 Γ(b− c− s)Γ(t + c + 1)

Γ(s + a + c + 1)Γ(t− c + 1)
wc

s(t, a, b) .

3. Dual Properties of the Racah Polynomials

The Racah polynomials were studied in several papers (see [18] and references therein) and, in par-
ticular, in [8]. Here we will study their dual properties. They are defined by [8]

uα,β
n (s, a, b) =

(a− b + 1)n(β + 1)n(a + b + α + 1)n

n!

×4 F3

(
−n, α + β + n + 1, a− s, a + s + 1

a− b + 1, β + 1, a + b + α + 1

∣∣∣∣1
) (30)

and satisfy the difference equation (1), where

σ(s) = (s− a)(s + b)(s + a− β)(b + α− s),
(31)

σ(s) + τ(s)∆x(s− 1/2) = σ(−s− 1) = (s + a + 1)(b− s− 1)(s− a + β + 1)(b + α + s + 1).

The alternative Racah polynomials are defined by [8]

ũα,β
n (s, a, b) =

(a− b + 1)n(2a− β + 1)n(a− b− α + 1)n

n!

×4F3

(
−n, 2a− 2b− α− β + n + 1, a− s, a + s + 1

a− b + 1, 2a− β + 1, a− b− α + 1

∣∣∣∣1
)

(32)

and satisfy the difference equation (1), where

σ(s) = (s− a)(s + b)(s− a + β)(b + α + s),

σ(s) + τ(s)∆x(s− 1/2) = σ(−s− 1) (33)

= (s + a + 1)(b− s− 1)(s + a− β + 1)(b + α− s− 1).

They are both polynomials of degree n on the lattice x(s) = s(s + 1) with leading coefficients

an =
Γ(α + β + 2n + 1)
n!Γ(α + β + n + 1)

and ãn =
(−1)nΓ(2b− 2a + α + β − n)
n!Γ(2b− 2a + α + β − 2n)

,

respectively. Notice also that ∆x(s + m) = 2s + 2m.
The main characteristics of the Racah polynomials uα,β

n (s, a, b) are given in [8] (Table 3.6, p. 108).
The main characteristics of the alternative Racah polynomials can be obtained changing α → −2b−α

and β → 2a− β.
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3.1. Polynomials of Degree k = s− a Dual to the Racah Polynomials

Let us construct the polynomials of degree s−a dual with respect to the Racah polynomials uαβ
n (s, a, b).

From (13) follows that the new variable is t = [(α + β)/2] + n and then the new interval of orthogonality
is (a′, b′), where a′ = (α + β)/2 and b′ = b− a + (α + β)/2. But a priori it is not clear what the values
of the new parameters α′ and β′ are, nor what kind of polynomials the corresponding dual ones will be.
Combining the two methods discussed in the first section, one concludes that in this case the dual family
is (k = s− a)

uα′β′

k (t, a′, b′) with a′ =
α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β, (34)

where uα′β′

k (t, a′, b′) are the Racah polynomials (30). Iterating (11) for the polynomials un(s) =
uαβ

n (s, a, b) we obtain

un(s) = [t(t + 1)]kun(a)
s−a∏
l=1

1
A(s− l)

+ · · ·

=
(−1)s−a+nΓ(b− s)Γ(β + n + 1)Γ(b + a + α + n + 1)Γ(2s + 1)

Γ(s + a + 1)Γ(s− a + β + 1)Γ(b + α + s + 1)Γ(n + 1)Γ(b− a− n)
[t(t + 1)]k + · · ·

Comparing this relation with the leading coefficient of the polynomial uα′β′

k (t, a′, b′) [see, e.g., [8] (Ta-
ble 3.6, p. 108)]

ak =
Γ(α′ + β′ + 2k + 1)

Γ(k + 1)Γ(α′ + β′ + k + 1)
=

Γ(2s + 1)
Γ(s− a + 1)Γ(s + a + 1)

,

we obtain (k = s− a)

uα′ β′

k (t, a′, b′) = (−1)s−a+n Γ(b− a− n)Γ(s− a + β + 1)Γ(b + α + s + 1)Γ(n + 1)
Γ(s− a + 1)Γ(b− s)Γ(n + β + 1)Γ(b + a + α + n + 1)

uαβ
n (s, a, b), (35)

where the parameters are given by (34).

3.2. Polynomials of Degree k = b− s− 1 Dual to the Racah Polynomials

In this case, the dual set is given by ũα′β′

k (t, a′, b′), where ũn are the alternative polynomials (32) with
the parameters defined as in the previous section, i.e.,

t =
α + β

2
+ n, a′ =

α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β. (36)

In this case, we have

A′
kn = (−1)kuαβ

n (b− 1, a, b)
b−s−1∏

l=1

1
C(s + l)

.

Using

uαβ
n (b− 1, a, b) =

Γ(b− a)Γ(α + n + 1)Γ(b + a− β)
Γ(n + 1)Γ(b− a− n)Γ(α + 1)Γ(b + a− β − n)

,
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along with (2) and (31), we obtain

A′
kn = (−1)b−s−1 Γ(s− a + 1)Γ(s + b + 1)Γ(s + a− β + 1)Γ(α + n + 1)

Γ(2s + 2)Γ(b + α− s)Γ(n + 1)Γ(b− a− n)Γ(b + a− β − n)
.

Now taking into account that the leading coefficient for the polynomial uα′β′

k (t, a′, b′)

a′k = (−1)k Γ(2b′ − 2a′ + α′ + β′ − k)
Γ(k + 1)Γ(2b′ − 2a′ + α′ + β′ − 2k)

= (−1)b−s−1 Γ(b + s + 1)
Γ(b− s)Γ(2s + 2)

,

with 2b′ − 2a′ + α′ + β′ − k = b + s + 1, we obtain for the proportionality coefficient the value

D′
kn =

Γ(b + α− s)Γ(n + 1)Γ(b− a− n)Γ(b + a− β − n)
Γ(s− a + 1)Γ(b− s)Γ(s + a− β + 1)Γ(n + α + 1)

,

i.e., (k = b− s− 1)

ũα′β′

k (t, a′, b′) =
Γ(b + α− s)Γ(n + 1)Γ(b− a− n)Γ(b + a− β − n)
Γ(s− a + 1)Γ(b− s)Γ(s + a− β + 1)Γ(n + α + 1)

uαβ
n (s, a, b), (37)

where the parameters are given by (36).

3.3. Polynomials of Degree k = s− a Dual to the Alternative Racah Polynomials

Now we find the polynomials of degree s − a dual to the alternative Racah polynomials ũαβ
n (s, a, b).

In this case, the dual family is uα′β′

k (t̃, a′, b′), where

t̃ = b− a− 1− n +
α + β

2
, a′ =

α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β. (38)

Notice that

λn = n(2b− 2a + α + β − n− 1) = −t̃(t̃ + 1)−
(

b− a +
α + β

2
− 1
)(

b− a +
α + β

2

)
.

Then, the coefficient of [t̃(t̃ + 1)]k for the polynomial ũαβ
n (s, a, b) reads

Ãkn = ũαβ
n (a, a, b)

s−a∏
l=1

(2s + 1 + 2l)(2s + 2− 2l)
σ(−s− l − l)

.

Using (2), (33), and

ũαβ
n (a, a, b) =

Γ(b− a)Γ(2a− β + n + 1)Γ(b− a + α)
Γ(n + 1)Γ(b− a− n)Γ(2a− β + 1)Γ(b− a + α− n)

,

we obtain

Ãkn =
Γ(2s + 1)Γ(b− s)Γ(b + α− s)Γ(2a− β + n + 1)

Γ(s + a + 1)Γ(s + a− β + 1)Γ(n + 1)Γ(b− a− n)Γ(b− a + α− n)
.
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Combining this with the value of the leading coefficient [see [8] (Table 3.6)]

ãk =
Γ(α′ + β′ + 2k + 1)

Γ(k + 1)Γ(α′ + β′ + k + 1)
=

Γ(2s + 1)
Γ(s− a + 1)Γ(s + a + 1)

,

we finally obtain

D̃nk =
ãk

Ãnk

=
Γ(s + a− β + 1)Γ(n + 1)Γ(b− a− n)Γ(b− a + α− n)

Γ(s− a + 1)Γ(b− s)Γ(b + α− s)Γ(2a− β + n + 1)
,

i.e., (k = s− a)

uα′β′

k (t̃, a′, b′) =
Γ(s + a− β + 1)Γ(n + 1)Γ(b− a− n)Γ(b− a + α− n)

Γ(s− a + 1)Γ(b− s)Γ(b + α− s)Γ(2a− β + n + 1)
ũαβ

n (s, a, b) , (39)

where the set of parameters is given by (38).

3.4. Polynomials of Degree k = b− s− 1 Dual to the Alternative Racah Polynomials

In this case, the dual polynomials are ũα′β′

k=b−s−1(t̃, a
′, b′) and the set of parameters is the same as in

the previous case (38). Since

ũαβ
n (b− 1, a, b) = (−1)n Γ(b− a)Γ(2b + α)Γ(b− a + β)

Γ(n + 1)Γ(b− a− n)Γ(2b + α− n)Γ(b− a + β − n)
,

using (2) and (33), and then (15), we arrive at

Ã′
kn = (−1)n Γ(s− a + 1)Γ(s + b + 1)Γ(s− a + β + 1)Γ(b + α + s + 1)

Γ(n + 1)Γ(b− a− n)Γ(2b + α− n)Γ(b− a + β − n)Γ(2s + 2)
.

Combining the above formula with the value of the leading coefficient for the ũαβ
n polynomials

ãk = (−1)k Γ(2b′ − 2a′ + α′ + β′ − k)
Γ(k + 1)Γ(2b′ + 2a′ + α′ + β′ − 2k)

= (−1)b−s−1 Γ(b + s + 1)
Γ(b− s)Γ(2s + 2)

,

we obtain

D̃′
kn = (−1)b−s−n−1 Γ(n + 1)Γ(b− a− n)Γ(b− a + β − n)Γ(2b + α− n)

Γ(s− a + 1)Γ(b− s)Γ(s− a + β + 1)Γ(b + α + s + 1)
,

i.e., (k = b− s− 1)

ũα′,β′

k (t̃, a′, b′) = (−1)b−s−n−1 Γ(n + 1)Γ(b− a− n)Γ(b− a + β − n)Γ(2b + α− n)
Γ(s− a + 1)Γ(b− s)Γ(s− a + β + 1)Γ(b + α + s + 1)

ũαβ
n (s, a, b), (40)

where t̃ = b− a− 1− n + (α + β)/2, a′ = (α + β)/2, b′ = b− a + (α + β)/2, α′ = 2a− β, and β′ = β.
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3.5. Connection between the Two Families of Racah Polynomials uαβ
n (s, a, b) and

ũαβ
n (s, a, b)

If we change n → b− a− n− 1 and t̃ → t in (39), it becomes

uα′β′

s−a (t, a′, b′) =
Γ(s + a− β + 1)Γ(n + 1)Γ(b− a− n)Γ(α + n + 1)
Γ(s− a + 1)Γ(b− s)Γ(b + α− s)Γ(b + a− β − n)

ũαβ
b−a−n−1(s, a, b) .

Comparing this with (35), we derive

ũαβ
b−a−n−1(s, a, b) = (−1)s−a+n Γ(s− a + β + 1)Γ(b + α− s)Γ(b + α + s + 1)Γ(b + a− β − n)

Γ(s + a− β + 1)Γ(α + n + 1)Γ(n + β + 1)Γ(b + a + α + n + 1)
uαβ

n (s, a, b) .

(41)
The same formula is obtained when we use (37) and (40).

4. The q-Hahn Polynomials

4.1. The q-Hahn Polynomials hαβ
n (x(s), N)q

In this section, we will consider the q-Hahn polynomials defined by the basic series [7, 13,21]

hα,β
n (s,N)q =

(−1)n(q2β+2; q2)n(q2−2N ; q2)n

q−2n(α+N)(q − q−1)n(q2; q2)n
3ϕ2

(
q−2n, q−2s, q2(n+α+β+1)

q2β+2, q2−2N
; q2, q2(s−N−α+1)

)

=
(q2β+2; q2)n(q2(N+α+β+1); q2)n

qn(2β+n+1)(q − q−1)n(q2; q2)n
3ϕ2

(
q−2n, q2s+2β+2, q2(n+α+β+1)

q2β+2, q2(N+α+β+1)
; q2, q2

)
.

Notice that they are polynomials of degree n on the lattice x(s) = q2s. Furthermore, they satisfy the
difference equation (1) or (4) on the lattice x(s) = q2s with

A(s) = q2α+β+N+1−2s[N − s− 1]q[β + s + 1]q ,

C(s) = qα+N+1−2s[s]q[α + N − s]q ,

λn = qα+β+2[n]q[n + α + β + 1]q

= qα+β+2

[(
n +

α + β

2

)
q

(
n +

α + β

2
+ 1
)

q

−
(

α + β

2

)
q

(
α + β

2
+
)

q

]
.

(42)

Here and in the following, we will denote by [n] the symmetric q-number

[n] =
qn − q−n

q − q−1
, and [n]! = [n][n− 1] · · · [1], n ∈ N.

In general, we will use the following notation by Nikiforov and Uvarov (see Eq. (3.2.24) in [8]):
The Γ̃q function constitutes the q-analog of the Γ function and is related to the classical q-Gamma

function Γq by the formula

Γ̃q(s) = q−(s−1)(s−2)/2Γq2(s) = q−(s−1)(s−2)/2(1− q2)1−s (q2; q2)∞
(q2s; q2)∞

, 0 < q < 1.
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For simplicity, we will also use the symbol

[x]! := Γ̃q(x + 1), x ∈ R.

In the following, we will use the simpler notation [x] := [x]q except where indicated.
All the characteristics of the q-Hahn polynomials can be found in Table 1.
Using the Rodrigues formula for the q-polynomials (3), we obtain the following explicit formula:

hαβ
n (x(s), N, q) = (−1)nqn[2α+β+N+(n+1)/2] Γ̃q(N − s)Γ̃q(s + 1)

Γ̃q(α + N − s)Γ̃q(β + s + 1)

×
n∑

m=0

(−1)mq−m(α+β+n+1) Γ̃q(α + N − s + m)Γ̃q(β + s + n−m + 1)

[m]![n−m]!Γ̃q(s−m + 1)Γ̃q(N − s− n + m)
,

from which the following formulas follow (see also the hypergeometric representation):

hαβ
n (x(0), N ; q) = (−1)n [N − 1]!Γ̃q(β + n + 1)

[n]!Γ̃q(β + 1)[N − n− 1]!
qn[2α+β+N+(n+1)/2] , (43)

hαβ
n (x(N − 1), N ; q) =

[N − 1]!Γ̃q(α + n + 1)

[n]!Γ̃q(α + 1)[N − n− 1]!
qn[α+N−(n+1)/2] . (44)

These polynomials transform into the Hahn polynomials (18) at q → 1.

4.2. The Alternative q-Hahn Polynomials h̃αβ
n (x(s), N)q

The alternative q-Hahn polynomials are defined by

h̃α,β
n (s,N)q =

(−1)n(q−2N−2β+2; q2)n(q2−2N ; q2)n

q2nα(q − q−1)n(q2; q2)n

×3 ϕ2

(
q−2n, q−2s, q2(n−α−β−2N+1)

q−2β−2N+2, q2−2N
; q2, q2(s+α+1)

)

=
(q−2β−2N+2; q2)n(q2(−N−α−β+1); q2)n

qn(−2β−2N+n+1)(q − q−1)n(q2; q2)n

×3 ϕ2

(
q−2n, q2s−2N−2β+2, q2(n−α−β−2N+1)

q−2N−2β+2, q2(−N−α−β+1)
; q2, q2

)
.

Notice that they are polynomials of degree n on the lattice x(s) = q2s and satisfy the difference equation
(1) or (4) on x(s) with

As = q−2N−2α−β−2s+1[N − s− 1][N + β − s− 1] ,

Cs = q−α−2s+1[s][s + α] ,

λn = q−2N−α−β+2[n][2N + α + β − n− 1]

= q−2N−α−β+2(−[t̃][t̃ + 1] + {N + [(α + β)/2]− 1}[N + (α + β)/2],

(45)
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TABLE 1. The Main Data of the q-Hahn Polynomials hαβ
n (x(s), N)q.

hαβ
n (x(0), N ; q), x(s) = q2s

ρ(x) q[α(α+2N+2s−3)/2]+β(β+2s−1)/2 Γ̃q(α + N − s)Γ̃q(β + s + 1)

Γ̃q(N − s)Γ̃q(s + 1)

σ(s) qα+N+2s(q − q−1)2[s][α + N − s]

τ(s) (q − q−1)qα+β+2
{
qα+N [β + 1][N − 1]− qs[s][α + β + 2]

}
φ(s) (q − q−1)2q2α+b+N+2s+2[N − s− 1][β + s + 1]

λn qα+β+2[n][n + α + β + 1]
= qα+β+2([n + (α + β)/2][n + (α + β)/2 + 1]− [(α + β)/2][(α + β)/2 + 1])

Bn (−1)n 1
[n]!q2n(q − q−1)

ρn(s) qs(α+β+2n)+n(2α+β+N+n+1)+[α(α+2N−3)+β(β−1)]/2

×(q − q−1)2n Γ̃q(α + N − s)Γ̃q(β + s + n + 1)

Γ̃q(s + 1)Γ̃q(N − s− n)

an
qn(α+β+1)Γ̃q(α + β + 2n + 1)

(q − q−1)nΓ̃q(n + 1)Γ̃q(α + β + n + 1)

d2
n (q − q−1)

Γ̃q(n + 1)Γ̃q(α + n + 1)Γ̃q(β + n + 1)Γ̃q(α + β + N + n + 1)

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(α + β + n + 1)[α + β + 2n + 1]
×q{α[(α+2N−3)+β(β−1)]/2}+n(3α+β+2N)+(β+1)(N−1)

αn
[n + 1][α + β + n + 1](q − q−1)

[α + β + 2n + 1][α + β + 2n + 2]qα+β+1

βn
q−(α+β+2)

[α + β + 2n][α + β + 2n + 2]
×(q2α+N+1([N − n][n][α + β + 2n + 2]− [N − n− 1][n + 1][α + β + 2n])
+qα+β+N+1([α + β + N + n + 1][n + 1][α + β + 2n]− [α + β + N + n][n][α + β + 2n + 2]))

γn (q − q−1)q2α+2N−1 [α + n][β + n][α + β + N + n][N − n]
[α + β + 2n][α + β + 2N + 1]
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where t̃ = N + [(α + β)/2]− n− 1. Their main characteristics are given in Table 2.
From the Rodrigues formula follows that

h̃αβ
n (x(s), N, q) = q−n[2N+2α+β−(n+1)/2] Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(α + s + 1)Γ̃q(N + β − s)

×
n∑

m=0

(−1)mqm(2N+2α+β−n−1)

[m]![n−m]![s−m]!Γ̃q(α + s−m + 1)Γ̃q(N − n− s + m)Γ̃q(N + β − n− s + m)
.

So, for s = 0 and s = N − 1 we find, respectively,

h̃αβ
n (x(0), N ; q) = q−n[2N+2α+β−(n+1)/2] [N − 1]!Γ̃q(N + β)

[n]![N − n− 1]!Γ̃q(N + β − n)
(46)

and

h̃αβ
n (x(N − 1), N ; q) = (−1)nq−n[α+(n+1)/2] [N − 1]!Γ̃q(N + α)

[n]![N − n− 1]!Γ̃q(N + α− n)
. (47)

These polynomials transform into the alternative Hahn polynomials (19) at q → 1.

4.3. The q-Dual Hahn Polynomials

The q-dual Hahn polynomials W c
n(x(s), a, b)q are defined by the basic series [14,15]

W c
n(x(s), a, b)q =

(−1)n(q2(a−b+1); q2)n(q2(a+c+1); q2)n

qn(3a−b+c+1+n)κn
q (q2; q2)n

× 3ϕ2

(
q−2n, q2a−2s, q2a+2s+2

q2(a−b+1), q2(a+c+1)

∣∣∣∣∣q2, q2

)
,

and they are polynomials of degree n on the q-quadratic lattice x(s) = [s][s + 1], where a ≤ s ≤ b − 1,
with the leading coefficient

an = q−3n(n−1)/2 1
[n]!

. (48)

All their characteristics can be found in Table 3.
These polynomials transform into the dual Hahn polynomials (20) at q → 1. The main data of the

polynomials can be found in [14].

4.4. Polynomials of Degree k = s Dual to the q-Hahn Polynomials

Following the results for the classical case (non “q”), one can expect that the polynomials of degree
k = s dual to the q-Hahn polynomials hαβ

n (x(s), 0, N ; q) are the polynomials W c
k (t, a, b′)q with

t = n +
α + β

2
, a =

α + β

2
, b = N +

α + β

2
, and c =

β − α

2
.

Nevertheless, since for the q-dual Hahn polynomials λn = q−n+1[n] =
q−2n − 1
q−2 − 1

, the corresponding

polynomials hαβ
n (x(s), N, q) should be defined in the lattice x(s) = q−2s; therefore, the right choice will

be W c
k (t, a, b)q−1 .
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TABLE 2. The Main Data of the Alternative q-Hahn Polynomials h̃αβ
n (x(s), N)q

h̃αβ
n (x(0), N ; q), x(s) = q2s

ρ(s)
q−s(2N+α+β)−[(N+α)(N−α−3)/2]+(N+β)(N+β+1)/2

Γ̃q(s + 1)Γ̃q(α + s + 1)Γ̃q(N − s)Γ̃q(N + β − s)

σ(s) q2s−α[s][s + α](q − q−1)2

τ(s) (q − q−1)q2−2α−β−2N{[N − 1][N + β − 1]− qα+s[2N + α + β − 2][s]}

φ(s) (q − q−1)2q−2N−2α−β−2s+1[N − s− 1][N + β − s− 1]

λn q−2N−α−β+2[n][2N + α + β − n− 1]

Bn
1

[n]!qn(q − q−1)n

ρn(s)
(q − q−1)2nq−[(N+α)(N−α−3)/2]+[(N+β)(N+β+1)/2]−s(2N+α+β−2N)−n(2N+2α+β−n−1)

Γ̃q(s + 1)Γ̃q(α + s + 1)Γ̃q(N − s)Γ̃q(N + β − s)

an (−1)n qn(2N+α+β−1)Γ̃q(2N + α + β − n)

(q − q−1)nΓ̃q(n + 1)Γ̃q(2N + α + β − 2n)

d2
n

(q − q−1)Γ̃q(2N + α + β − n)

[2N + α + β − 2n− 1]Γ̃q(n + 1)Γ̃q(N + α− n)Γ̃q(N + β − n)

×q−[(N+α)(N+α−3)/2]+[(N+β)(N+β+1)/2]−n(2N+3α+β)−(N−1)(N+β−1)

Γ̃q(N + α + β − n)Γ̃q(N − n)

αn −(q − q−1)q2N+α+β−1[n + 1][2N + α + β − n− 1]
[2N + α + β − 2n− 1][2N + α + β − 2n− 2]

βn
q2N+α+β−2

[2N + α + β − 2n− 2][2N + α + β − 2n]
×(q−N−2α+1([N − n− 1][n + 1][2N + α + β − 2n])

+q−N−α−β+1([N + α + β − n− 1][n + 1][2N + α + β − 2n]
−[N + α + β − n][n][2N + α + β − 2n− 2]))

γn −(q − q−1)q2N+α+β−1 [N + α− n][N + β − n][N − n]
[2N + α + β − 2n− 1][2N + α + β − 2n]
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TABLE 3. The Main Data of the q-Dual Hahn Polynomials

Pn(s) W c
n(x(s), a, b)q , x(s) = [s]q[s + 1]q

(a, b) [a, b− 1]

ρ(s)
q−s(s+1)Γ̃q[s + a + 1]Γ̃q[s + c + 1]

Γ̃q[s− a + 1]Γ̃q[s− c + 1]Γ̃q[s + b + 1]Γ̃q[b− s]

−1
2 ≤ a < b− 1, |c| < a + 1

σ(s) qs+c+a−b+2[s− a]q[s + b]q[s− c]q

τ(s) −x(s) + qa−b+c+1[a + 1]q[b− c− 1]q + qc−b+1[b]q[c]q

λn q−(n−1)[n]q

Bn
(−1)n

[n]q!

d2
n qac−ab−bc+a+c−b+1+2n(a+c−b)−n2+5n Γ̃q[a + c + n + 1]q

[n]qΓ̃q[b− c− n]qΓ̃q[b− a− n]q

ρn(s)
q−s(s+1+n)−(n2/2)+n(a+c−b+3/2)Γ̃q[s + a + n + 1]Γ̃q[s + c + n + 1]

Γ̃q[s− a + 1]Γ̃q[s− c + 1]Γ̃q[s + b + 1]Γ̃q[b− s− n]

an
q−3n(n−1)/2

[n]q!

αn q3n[n + 1]q

q2n−b+c+1[b− a− n + 1]q[a + c + n + 1]q
βn

+q2n+2a+c−b+1[n]q[b− c− n]q + [a]q[a + 1]q

γn qn+3+2(c+a−b)[n + a + c]q[b− a− n]q[b− c− n]q

Then, in view of the same ideas as before (see the previous sections), from (43) and (42) we obtain

s∏
l=1

−qα+β+2

A(s− l)
= (−1)sqs(α+β+2) Γ̃q(N − s)Γ̃q(β + 1)

Γ̃q(N)Γ̃q(β + s + 1)
q−s(2α+β+N+1)+s(s+1) ;

thus

Asn = (−1)s+n Γ̃q(N − s)Γ̃q(β + n + 1)

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(β + s + 1)
qn(2α+β+N)+n(n+1)/2q−s(N+α−s) .

Taking into account the value of the leading coefficient of the q-dual Hahn, we have as = q3s(s−1)/2

[s]! and,
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therefore,

Dsn = (−1)s+n Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(β + s + 1)

Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(β + n + 1)
q−n[2α+β+N+(n+1)/2]qs[N+α+(s−3)/2] ,

i.e.,

W c
k=s(t, a, b)q−1 = (−1)s+n Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(β + s + 1)

Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(β + n + 1)

×q−n[2α+β+N+(n+1)/2]qs(N+α+(s−3)/2]hαβ
n (s,N, q) , (49)

where

t = n +
α + β

2
, a =

α + β

2
, b = N +

α + β

2
, c =

β − α

2
.

Another way of obtaining the above result is to use the relation

D2
sn =

ρ(s)∆(x(s− 1/2))d2
s

ρ(t)∆(ξ(t− 1/2))d2
n

equivalent to (17), where ρ(s) and d2
n are the weight function and the norm, respectively, of the q-Hahn

polynomials hαβ
n (s,N, q) and ρ(t); and d2

s are the ones of the q-dual Hahn polynomials W c
s (t, a, b)q−1 .

Straightforward computation leads to the same formula (49).

4.5. Polynomials of Degree k = N − s− 1 Dual to the q-Hahn Polynomials

This case is quite similar to the previous one. We use (44) and (42), which leads to

A′
kn = (−1)N−s−1 qn(N+α−(n+1)/2]q(N−s−1)(β+s+1)Γ̃q(s + 1)Γ̃q(n + α + 1)

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + α− s)
.

Since, in this case, ak = q−3k(k−1)/2

[k]! and we obtain

D′
kn = (−1)N−s−1q−n(N+α−(n−1)/2]q−(N−s−1){[(3N+s)/2]+β−2}

× Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + α− s)

Γ̃q(s + 1)Γ̃q(N − s)Γ̃q(n + α + 1)

and, therefore,

W
(α−β)/2
N−s−1 (t)q = (−1)N−s−1 Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + α− s)

Γ̃q(s + 1)Γ̃q(N − s)Γ̃q(n + α + 1)

×q−n[N+α−(n+1)/2]q−(N−s−1){[(3N+s)/2]+β−2}hαβ
n (s,N, q). (50)
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4.6. Polynomials of Degree k = s Dual to the Alternative q-Hahn Polynomials

In this case, following the same procedure as before and using (45), (46), and (48), we find

Ãsn =
Γ̃q(N − s)Γ̃q(N + β − s)

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + β − n)
q−n(2N+2α+β−(n+1)/2]qs(s+α) ,

D̃sn =
Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + β − n)

Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(N + β − s)
qn[2N+2α+β−(n+1)/2]q−s[α−(s−3)/2] ,

and, therefore,

W
1
2
(α−β)

s (t̃)q−1 =
Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + β − n)

Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(N + β − s)

×qn(2N+2α+β−(n+1)/2]q−s[α−(s−3)/2]h̃αβ
n (s,N, q),

where t̃ = N + [(α + β)/2]− n− 1.

4.7. Polynomials of Degree k = N−s−1 Dual to the Alternative q-Hahn Polynomials

Finally, for this case using (45), (47), and (48) we find

Ã′
kn = (−1)n q−n[α+(n+1)/2]q(N−s−1)(N+β−s−1)Γ̃q(s + 1)Γ̃q(s + α + 1)

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + β − n)
,

D̃′
kn = (−1)n qn[α+(n+1)/2]q−(N−s−1){[(N−s)/2]−β−2}Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + α− n)

Γ̃q(s + 1)Γ̃q(N − s)Γ̃q(s + α + 1)
and

W
(β−α)/2
N−s−1 (t̃)q = (−1)n Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(N + α− n)

Γ̃q(s + 1)Γ̃q(N − s)Γ̃q(s + α + 1)

×qn[α+(n+1)/2]q−(N−s−1){[(N−s)/2]−β−2}h̃αβ
n (s,N, q),

(52)

where t̃ = N + [(α + β)/2]− n− 1.

4.8. Connection between q-Hanh Polynomials

Making the change t̃ = N + [(α + β)/2]− n− 1 → t = [(α + β)/2] + n and −c → c (or equivalently,
n → N − n− 1 and α, β → β, α) in (51) one obtains

W (β−α)/2
s (t̃, a, b)q−1 =

Γ̃q(n + 1)Γ̃q(N − n)Γ̃q(α + n + 1)

Γ̃q(N − s)Γ̃q(s + 1)Γ̃q(N + α− s)

× q(N−n−1){[(3N+n)/2]+α+2β}q−s[β−(s−3)/2]h̃βα
N−n−1(s,N, q)) .

(53)

If we compare the above expression with (49), we find

hαβ
n (s,N ; q) = (−1)s+nqn(α−β)+(N−1)[(3N/2)+α+2β]−s(N+α+β)

× Γ̃q(n + α + 1)Γ̃q(n + β + 1)

Γ̃q(N + α− s)Γ̃q(β + s + 1)
h̃βα

N−n−1(s,N ; q) .
(54)
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The last formula can be rewritten in the following way:

hαβ
n (s,N ; q) = (−1)s+n

√
ρ̃(s)d2

n

ρ(s)d̃2
N−n−1

h̃βα
N−n−1(s,N ; q) , (55)

where ρ(s) and d2
n are the weight function and the norm of the polynomials hαβ

n (s,N ; q), and ρ̃(s) and
d̃2

N−n−1 are the weight function and the norm of the polynomials h̃βα
N−n−1(s,N ; q).

Now using (49) and (50) we find

W (β−α)/2
s (t, a, b)q−1 = (−1)N−n−1 Γ̃q(n + α + 1)Γ̃q(β + s + 1)

Γ̃q(N + α− s)Γ̃q(β + n + 1)

× q−n(α+β+n+1)−s(N−α+β−s−1)+(N−1)[(3N/2+β−2]W
(α−β)/2
N−s−1 (t, a, b)q .

(56)

If we now substitute α = a− c, β = a + c, n = t− a, and N = b− a, we obtain

W c
s (t, a, b)q−1 = (−1)b−t−1 Γ̃q(t− c + 1)Γ̃q(a + c + s + 1)

Γ̃q(t + c + 1)Γ̃q(b− c− s)

× q(b−a−1){[(3b−a)/2]+c−2}−s(b−a+2c−s−1)−(t−a)(t+a+1) W−c
N−s−1(t, a, b)q .

(57)

5. The q-Racah Polynomials

The q-Racah polynomials are defined by

uα,β
n (x(s), a, b)q =

q−n(2a+α+β+n+1)(q2(a−b+1); q2)n(q2β+2; q2)n(q2(a+b+α+1); q)n

(q − q−1)2n(q2; q2)n

× 4ϕ3

(
q−2n, q2(α+β+n+1), q2a−2s, q2(a+s+1)

q2(a−b+1), q2β+2, q2(a+b+α+1)

∣∣∣∣ q2 , q2

)
.

(58)

They are polynomials of degree n on the q-quadratic lattice x(s) = [s][s + 1] with the leading coefficient

an =
Γ̃q(α + β + 2n + 1)

[n]!Γ̃q(α + β + n + 1)
,

A detailed study of this family was done in [16] (see also [13, 17]). Their main characteristics are given
in Table 1 of [16].

The alternative q-Racah polynomials are defined by

ũα,β
n (x(s), a, b)q =

q−n(4a−2b−α−β+n+1)(q2(a−b+1); q2)n(q2(2a−β+1); q2)n(q2(a−b−α+1); q2)n

(q − q−1)2n(q2; q2)n

× 4ϕ3

(
q−2n, q2(2a−2b−α−β+n+1), q2a−2s, q2(a+s+1)

q2(a−b+1), q2(2a−β+1), q2(a−b−α+1)

∣∣∣∣ q2 , q2

)
.

(59)
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They are polynomials of degree n on the q-quadratic lattice x(s) = [s][s + 1] with the leading coefficient

an =
(−1)nΓ̃q[2b− 2a + α + β − n]q
[n]q!Γ̃q[2b− 2a + α + β − 2n]q

.

Moreover [16],

ũα,β
n (x(a), a, b)q =

Γ̃q(b− a)Γ̃q(2a− β + n + 1)Γ̃q(b− a + α)

[n]!Γ̃q(b− a− n)Γ̃q(2a− β + 1)Γ̃q(b− a + α− n)
,

ũα,β
n (x(b− 1), a, b)q =

(−1)nΓ̃q(b− a)Γ̃q(2b + α)Γ̃q(b− a + β)

[n]!Γ̃q(b− a− n)Γ̃q(2b + α− n)Γ̃q(b− a + β − n)
.

(60)

A detailed study of this family was done in [16] and their main characteristics are given in Table 2 of [16].
Let us now study the duality properties of the q-Racah polynomials. First of all, notice that all the

characteristics of these polynomials transform into the corresponding ones by replacing the q-numbers
[m] with the standard ones m and the q-Gamma functions Γ̃q(x), with the classical ones Γ(x). Therefore,
it is reasonable to expect that all the results in Sec. 3 can be extended to this case just replacing the
standard numbers and functions by their symmetric q-analogs. We will show only the details for the first
case, since the other three are equivalent and we will include only the final result.

5.1. Polynomials of Degree k = s− a Dual to the q−Racah Polynomials

Let us consider in detail the first case.
Let us construct the polynomials of degree s − a dual with respect to the q-Racah polynomials

uαβ
n (s, a, b)q. First of all, notice that for these polynomials

λn = [n][n + α + β + 1] =
(
[t][t + 1]− [(α + β)/2]{[(α + β)/2] + 1}

)
,

where t = n+(α+β)/2. Following the same ideas as for the non q-case, we see that the dual polynomials
to uαβ

n (s, a, b)q should be (k = s− a)

uα′β′

k (t, a′, b′), where a′ =
α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β. (61)

Iterating (11) for the polynomials un(s) = uαβ
n (s, a, b)q we find

un(s) = {[t][t + 1]}kuαβ
n (a, a, b)q

s−a∏
l=1

1
A(s− l)

+ · · ·

=
(−1)s−a+nΓ̃q(b− s)Γ̃q(β + n + 1)Γ̃q(b + a + α + n + 1)Γ(2s + 1)

Γ̃q(s + a + 1)Γ̃q(s− a + β + 1)Γ̃q(b + α + s + 1)Γ̃q(n + 1)Γ̃q(b− a− n)
{[t][t + 1]}k + · · ·

(62)

Comparing this with the leading coefficient of the polynomial uα′β′

k (t, a′, b′)q

ak =
Γ̃q(α′ + β′ + 2k + 1)

Γ̃q(k + 1)Γ̃q(α′ + β′ + k + 1)
=

Γ̃q(2s + 1)

Γ̃q(s− a + 1)Γ̃q(s + a + 1)
, (63)
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we obtain (k = s− a)

uα′,β′

k (t, a′, b′)q = (−1)s−a+n Γ̃q(b− a− n)Γ̃q(s− a + β + 1)Γ̃q(b + α + s + 1)Γ̃q(n + 1)

Γ̃q(s− a + 1)Γ̃q(b− s)Γ̃q(n + β + 1)Γ̃q(b + a + α + n + 1)
uαβ

n (s, a, b)q.

(64)

5.2. Polynomials of Degree k = b− s− 1 Dual to the q-Racah Polynomials

In this case, the dual set is given by ũα′β′

k (t, a′, b′)q, where ũn are the alternative polynomials with the
parameters defined as follows:

t =
α + β

2
+ n, a′ =

α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β, (65)

so, we have (k = b− s− 1)

ũα′β′

k (t, a′, b′)q =
Γ̃q(b + α− s)Γ̃q(n + 1)Γ̃q(b− a− n)Γ̃q(b + a− β − n)

Γ̃q(s− a + 1)Γ̃q(b− s)Γ̃q(s + a− β + 1)Γ̃q(n + α + 1)
uαβ

n (s, a, b)q, (66)

where the parameters are given by (65).

5.3. Polynomials of Degree k = s− a Dual to the Alternative q-Racah Polynomials

In this case, the dual family is uα′β′

k (t̃, a′, b′)q, where

t̃ = b− a− 1− n +
α + β

2
, a′ =

α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β. (67)

The relation between the two families is (k = s− a)

uα′β′

k (t̃, a′, b′)q =
Γ̃q(s + a− β + 1)Γ̃q(n + 1)Γ̃q(b− a− n)Γ̃q(b− a + α− n)

Γ̃q(s− a + 1)Γ̃q(b− s)Γ̃q(b + α− s)Γ̃q(2a− β + n + 1)
ũαβ

n (s, a, b)q , (68)

where the set of parameters is given by (67).

5.4. Polynomials of Degree k = b− s− 1 Dual to the Alternative Racah Polynomials

In this case, the dual polynomials are ũα′β′

k=b−s−1(t̃, a
′, b′)q and the set of parameters are given by (67),

i.e., (k = b− s− 1)

ũα′,β′

k (t̃, a′, b′)q = (−1)b−s−n−1 Γ̃q(n + 1)Γ̃q(b− a− n)Γ̃q(b− a + β − n)Γ̃q(2b + α− n)

Γ̃q(s− a + 1)Γ̃q(b− s)Γ̃q(s− a + β + 1)Γ̃q(b + α + s + 1)
ũαβ

n (s, a, b)1,

(69)
where

t̃ = b− a− 1− n +
α + β

2
, a′ =

α + β

2
, b′ = b− a +

α + β

2
, α′ = 2a− β, β′ = β.
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5.5. Connection between the Two Families of q-Racah Polynomials uαβ
n (s, a, b)q and

ũαβ
n (s, a, b)q

If we change n → b− a− n− 1 and t̃ → t in (68), it becomes

uα′β′

s−a (t, a′, b′)q =
Γ̃q(s + a− β + 1)Γ̃q(n + 1)Γ̃q(b− a− n)Γ̃q(α + n + 1)

Γ̃q(s− a + 1)Γ̃q(b− s)Γ̃q(b + α− s)Γ̃q(b + a− β − n)
ũαβ

b−a−n−1(s, a, b)q . (70)

Comparing this with (64) we deduce that

ũαβ
b−a−n−1(s, a, b)q = (−1)s−a+n

× Γ̃q(s− a + β + 1)Γ̃q(b + α− s)Γ̃q(b + α + s + 1)Γ̃q(b + a− β − n)

Γ̃q(s + a− β + 1)Γ̃q(α + n + 1)Γ̃q(n + β + 1)Γ̃q(b + a + α + n + 1)
uαβ

n (s, a, b)q .

(71)

The same formula is obtained when we use (66) and (69).

6. Connection with the su(2) and suq(2) Algebras

Here we discuss the connection of the Hahn and Racah polynomials with the su(2) and suq(2) algebras.
A more detailed discussion can be found in [19,20,22] and references therein.

6.1. Clebsch–Gordan Coefficients for the su(2) Algebra and Hahn Polynomials

It is well known [see, e.g., [8] (§5.2.2)] that the Hahn polynomials hαβ
n (s,N) are related to the Clebsch–

Gordan coefficients (CGC) (j1m1j2m2|jm) of the su(2) algebra by the formula

(−1)j1−m1(j1m1j2m2|jm) =

√
ρ(s)
d2

n

hαβ
n (s,N), (72)

where n = j −m, s = j2 −m2, N = j1 + j2 −m + 1, α = m −m′, β = m + m′, m′ = j1 − j2, and ρ

and d2
n are the weight function and the norm of the Hahn polynomials, respectively. Notice that, using

the symmetry properties for the CCG, we can consider, without loss of generality, m − m′ ≥ 0 and
m + m′ ≥ 0, i.e., m− j1 + j2 ≥ 0 and m + j1 − j2 ≥ 0, and m ≥ |j1 − j2|.

For finding the connection between the alternative Hahn polynomials h̃αβ
n (s,N) and the CGC, we

can use the connection between these two families (29) and substitute it in the last formula. This yields

(−1)j1+j2−j(j1m1j2m2|jm) =

√
ρ̃(s)

d̃2
N−n−1

h̃αβ
N−n−1(s,N), (73)

where n = j −m, s = j2 −m2, N = j1 + j2 −m + 1, α = m −m′, β = m + m′, m′ = j1 − j2, and ρ̃

and d̃2
n are the weight function and the norm of the alternative Hahn polynomials, respectively.

To establish the connection of the CGC with the dual Hahn polynomials w
(c)
k (t) we can use, e.g.,

(22). This leads to

(−1)j1+j2−j(j1m1j2m2|jm) =

√
ρ(t)(2t + 1)

d2
k

w
(c)
k (t, a, b), (74)
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where c = j1 − j2, k = j2 −m2, t = j, a = m, and b = j1 + j2 + 1 [compare it with [8](Eq. (5.2.14),
p. 246)] and ρ and d2

k are the weight function and the norm of the dual Hahn polynomials.
Now, using the connection between the alternative Hahn polynomials and the dual Hahn polynomials

[see (26) or (28)], we find another expression connecting CGC and dual Hahn polynomials

(j1m1j2m2|jm) =

√
ρ(t)(2t + 1)

d2
k

w
(c)
k (t, a, b), (75)

where now c = j1 − j2, k = j1 −m1, t = j, a = m, and b = j1 + j2 + 1.

6.2. 6j-Symbols for the su(2) Algebra and Racah Polynomials

In [8] the formula

(−1)j1+j+j23
√

2j12 + 1

{
j1

j3

j2

j

j12

j23

}
=

√
ρ(s)
d2

n

uαβ
n (s, a, b) (76)

connecting the 6j-symbols for the su(2) algebra and Racah polynomials was proved, where ρ(s) and dn

are the weight function and the norm of the Racah polynomials; n = j12− j1 + j2, x = s(s+1), s = j23,
a = j3 − j2, b = j2 + j3 + 1, α = j1 − j2 − j3 + j, and β = j1 − j2 + j3 − j. Here it was supposed that
j1 − j2 ≥ |j3 − j| and j3 − j2 ≤ |j1 − j|.

Using the connection between the Racah polynomials uαβ
n (s, a, b) and the alternative Racah polyno-

mials ũαβ
n (s, a, b) (41), we find another connection formula

(−1)j12+j3+j
√

2j12 + 1

{
j1

j3

j2

j

j12

j23

}
=

√
ρ̃(s)

d̃2
n

ũαβ
n (s, a, b) , (77)

where ρ̃(s) and d̃n are the weight function and the norm of the alternative Racah polynomials ũαβ
n (s, a, b)

but now n = j1 + j2 − j12. The other parameters s, a, b, α, and β are defined as before.
Finally, let us mention that the duality relation for the Racah polynomials is equivalent to the

symmetry property of the 6j-symbols{
j1

j3

j2

j

j12

j23

}
=

{
j3

j1

j2

j

j23

j12

}
. (78)

6.3. Clebsch–Gordan Coefficients for the suq(2) Algebra and Hahn Polynomials

Following [21] we state that the relation between the CGC of the suq(2) algebra and the q-Hahn
polynomials hαβ

n (s,N ; q) is

(j1m1j2m2|jm)q−1 = (−1)n+s

√
ρ(s)∆(x(s− 1/2))

d2
n

hαβ
n (s,N ; q) , (79)

where s = j1 −m1, N = j1 + j2 −m + 1, α = m + j1 − j2, β = m− j1 + j2, n = j −m, and ρ and d2
n

are the weight function and the norm of the q-Hahn polynomials.
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If we now use the identity [see, e.g., [13] (Eq. (8.198), p. 314)]

(−1)nqn(α+β+N)hβα
n (N − s− 1, N, q−1) = hαβ

n (s,N, q) , (80)

we obtain an alternative setting

(j1m1j2m2|jm)q = (−1)N−s−1

√
ρ(s)∆(x(s− 1/2))

d2
n

hαβ
n (s,N ; q) , (81)

where now s = j2 −m2, N = j1 + j2 −m + 1, α = m− j1 + j2, β = m + j1 − j2, and n = j −m.
For the q-dual Hahn polynomials, we have [14]

(−1)j1+j2−j(j1m1j2m2|jm)q =

√
ρ(s)∆x(s− 1/2)

d2
n

W c
n(x(s), a, b)q−1 , (82)

where |j1 − j2| < m, n = j2 −m2, s = j, a = m, c = j1 − j2, b = j1 + j2 + 1, and ρ and d2
n are the

weight function and the norm of the q-dual Hahn polynomials.
Now using the relation between the q-dual Hahn polynomials (57), we find another equivalent relation

(j1m1j2m2|jm)q =

√
ρ(s)∆x(s− 1/2)

d2
N−n−1

W−c
N−n−1(x(s), a, b)q , (83)

where n, s, a, b, and c have the same values as before.

6.4. 6j-Symbols for the suq(2) Algebra and q-Racah Polynomials

Now for the q-case, the relation between the q-analog of 6j-symbols and the q-Racah polynomials
uαβ

n (s, a, b)q is given as follows:

(−1)j1+j+j23
√

2j12 + 1

{
j1

j3

j2

j

j12

j23

}
q

=

√
ρ(s)
d2

n

uαβ
n (s, a, b)q , (84)

where ρ(s) and dn are the weight function and the norm of the q-Racah polynomials uαβ
n (s, a, b)q and

n = j12) − j1 + j2, x(s) = [s][s + 1], s = j23, a = j3 − j2, b = j2 + j3 + 1, α = j1 − j2 − j3 + j, and
β = j1 − j2 + j3 − j, and it is supposed that j1 − j2 ≥ |j3 − j| and j3 − j2 ≤ |j1 − j|.

If we use the connection between the Racah polynomials uαβ
n (s, a, b)q and the alternative Racah

polynomials ũαβ
n (s, a, b)q (71), we find another formula

(−1)j12+j3+j
√

2j12 + 1

{
j1

j3

j2

j

j12

j23

}
q

=

√
ρ̃(s)

d̃2
n

ũαβ
n (s, a, b)q , (85)

where now ρ̃(s) and d̃n are the weight function and the norm of the q-Racah polynomials ũαβ
n (s, a, b)q

and n = j1 + j2 − j12, while s, a, b, α and β are as before. Moreover, the duality relation for the Racah
polynomials is equivalent to the symmetry property of the q–6j-symbols{

j1

j3

j2

j

j12

j23

}
q

=

{
j3

j1

j2

j

j23

j12

}
q

. (86)
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7. Conclusions

In this paper, we show that for any sequence of orthogonal polynomials (yn)n with a weight function
supported on a finite set of points two sets of dual (to this family) polynomials (zk)k can be obtained.
These pairs were obtained explicitly for the Hahn and Racah polynomials as well as for their corresponding
q-analogs, i.e., we have found explicitly the formulas connecting the dual set zk(t) with the starting family
of polynomials yn(s)

zk(t) = Dknyn(s) . (87)

Moreover, if we substitute the inverse of the last expression

yn(s) = D−1
kn zk(t)

into the difference equation (SODE) (1) that the polynomials yn satisfy, we recover the three-term
recurrence relation (TTRR) (8). And vice versa, if we substitute it on the three-term recurrence relation
(8) for the polynomials yn, we obtain the difference equation (1) for the dual ones zk. The same happens
when we start with the formula (87). The SODE for the dual polynomials zk becomes the TTRR for the
yn, whereas the TTRR of the the dual polynomials zk transforms into the SODE for the starting family
yn.

In particular, using the obtained formulas connecting the different families discussed above, we can
extend the group-theoretical-representation interpretation of the Clebsch–Gordan coefficients and the
6j-symbols as well as their q-analogs.

To conclude this paper, let us mention that all formulas connecting the different families of orthogonal
polynomials here, as well as the new expressions for the Clebsch–Gordan coefficients and the 6j-symbols,
can be obtained by using the Whipple’s transformation or Sear’s transformation for hypergeometric and
basic hypergeometric series. Our main aim here, however, is to show that it can be done using the
already classical theory of orthogonal polynomials of discrete variables developed in [7,8] in a completely
equivalent way.
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